首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present here the photometric light curve analyses of the eclipsing binary star DN Aur. The CCD photometry, performed at the Behlen observatory using the 0.76 m automated telescope gave 646 individual data points inV andR bandpass filters. From this data we have determined a new epoch and an orbital period of 0.6168891 days. The published spectral classification is F3.The Wilson-Devinney model was used to derive the photometric solutions. DN Aur is a W UMa type contact binary system. The mass ratio, (q=m 2/m 10.210, where star 2 is eclipsed at the primary minimum) suggests that the system has A-type configuration. The computed light curve has a third light of about 22 percent and a total eclipse in the secondary minimum. A solution with a cool spot on the secondary component is also found. We recommend spectroscopic study of DN Aur even though the light curve analysis show it to be a single line spectroscopic system. Generally contact systems of spectral type F3 have periods ranging from 0.25 to 0.5 days. The longer period of DN Aur suggests that it is an evolved contact system with case A mass transfer.  相似文献   

2.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

3.
UBV photometric observations and elements of TT Hydrae obtained by Kulkarni and Abhyankar (1980) are combined with the radial velocity curve of Popper (1979, personal communication) to derive the absolute dimensions and. a model of this important Algol system. While the photometric ratios of radii inV andB are in agreement givingk = 0.3812 for a limb darkening coefficient ofx = 0.6, application of Irwin’s (1947) method givesx = 0.4 forU. The primary is found to be a main sequence Al V star of mass 2.61M and radius 2.01 R, and the secondary is classified as a Kl III star of mass 0.70M and radius 5.33R . The observed Fourier coefficients for the light outside the eclipse agree with those calculated from theory for the reflection and ellipticity effects. The system shows an ultraviolet excess of 0.5 to 0.6 magnitudes during primary eclipse, which is attributed to an asymmetric circumstellar distribution of matter around the primary. The evolutionary status of the secondary, which does not appear to fill its Roche lobe completely, is discussed.  相似文献   

4.
We solve the uvbyRI light curves obtained by Wolf (1994) with a CCD photometer. Wolf did not solve the light curves, while particular interest in them stems from the fact that a secondary minimum, which other observers failed to detect, is clearly seen in the byRI light curves. This enables us to consider a new eclipse model in which we hypothesize that the secondary component at primary minimum completely obscures the primary, smaller B star, but, at the same time, the light from a third star is observed. Based on this hypothesis, we computed the brightness of each of the three stars for the six bands by analyzing the depths of the primary and secondary minima. Satisfactory agreement between theoretical and observed light curves was achieved by assuming the following parameters for the stars: effective temperature T 1=17000 K, radius R 1 = 2.5 R , spectral type Sp1 = B3—B4 for the primary; T 2=5700 K, R 2 = 8.4 R , Sp2 = G0—G2 for the secondary; and T 3=29000 K, R 3 = 1.0 R , Sp3=B0 for the third star. In the Hertzsprung-Russell diagram, the first star lies on the zero-age main sequence, the second is on the way from the birthline to the main sequence in the region of giants, and the third falls within the region of hot subdwarfs.  相似文献   

5.
Double-lined spectra have been obtained at 2 Å/mm for the Mn star 112 Herculis AB. The components are shown to be a B6.5V star and A2V star. Hydrogen-line-blanketed models are used to calculate atmospheric abundances. The best models appear to beT e=13500 K, logg=4.0, T =2.5 km/sec for the primary; andT e=10000K, logg=4.2, T =6 km/sec for the secondary. Both stars appear to have the same abundances. Helium, carbon, magnesium, aluminum, silicon, calcium, vanadium, and nickel appear to be considerably underabundant; phosphorus, scandium, titanium, manganese, iron, gallium, and mercury considerably overabundant; and chromium, strontium, and zirconium normal in abundance.  相似文献   

6.
The O−C curve of SW Cyg between 1880 and 1977 is presented and discussed. It is found that the orbital period undergoes a systematic change, becoming greater with time. In addition, a periodic oscillation of amplitude 0 . d 015 with period of 43.8 years is superimposed on this general trend. It is concluded that the increase in the period is due to a transfer of mass from the secondary star to the primary and the periodic oscillation is due to the light time effect of the third body of mass functionf(m)=0.006M .  相似文献   

7.
The remaining core hydrogen burning lifetime after case B of mass transfer of the secondary (mass gaining) component in a medium mass close binary star is estimated, for mediummass binaries with primaries in the mass range 5M to 9M . From the comparison of this quantity with the helium burning time-scale of the remnant primary a critical mass ratioq c is derived such that for larger values ofq, mass transfer from the secondary towards the primary starts before the latter has evolved into a white dwarf. Consequences for the advanced stages of medium mass binaries are discussed.  相似文献   

8.
Preliminary study of the eclipsing binary AB Cas is presented here by using the photometric observational data. The primary component is one of the Sct variables with period of 0d.054, and whether the oscillation is of a radial mode or of a non-radial one is discussed. Two colour indices (B-V andU-B) data and the light curve analysis suggest that this binary system is a typical Algol type binary system, in which the primary component is near the ZAMS with about 2.3M and the secondary one is a subgiant star with about 0.5M .  相似文献   

9.
The period variations of TV Cassiopeiae between 1901 and 1977 are discussed in the light of the period change model proposed by Biermann and Hall. During each period decrease 4.0×10–6 M of mass is transferred from the secondary star to the primary. The average observable mass transfer rate is found to be 4.3×10–7 M yr–1. This average rate corresponds to the thermal time-scale of the mass-losing star.  相似文献   

10.
The models of non-rotating and rotating 2.31M \ stars of Population I composition have been calculated, starting at the threshold of stability. A 2.31M \ star was chosen to compare the results with the observational parameters of the primary component of the well-known detached binary YZ Cassiopeiae. The effects of rotation on the internal structure during the evolution of the star were studied by constructing sequences of axisymmetric rotating models under the assumption that angular momentum was conserved according to a predetermined angular velocity distribution depending on the structure of the star.The first section of this paper deals with effects of rotation on the evolutionary behaviours of the 2.31M \ star through the pre-Main-Sequence evolution as well as the zero-age Main Sequence.In the second section of this paper, the evolutionary studies have been extended up to near-hydrogen exhaustion phase in order to obtain a theoretical model corresponding to the given mass and radius of the primary component of YZ Cassiopeiae. The theoretical models were found to be in a good agreement with observational parameters. The computed rotating models of the primary of YZ Cassiopeiae indicates that its evolutionary age is 6.01×108 years; and the central hydrogen content 0.183 — which means that about 75% of its original value was depleted.  相似文献   

11.
12.
M. V. Kostina 《Astrophysics》2003,46(4):415-421
A simple model for heavy element enrichment in the intergalactic medium is examined. The dependence of the heavy element abundance in the intergalactic medium on star formation processes in primary galaxies is studied. The results are in agreement with observational data on the abundance of heavy elements in L a-clouds.  相似文献   

13.
The photometric elements of the Algol type binary TT Hydrae derived by the authors from theirUBV observations during 1973–77 have been combined with the spectroscopic elements given by Sanford (1937) and Sahade and Cesco (1946) to obtain the absolute dimensions of the system. It is found that the spectroscopic orbital elements given by Sanford represent the evolutionary status of the secondary component better than those of Sahade and Cesco. The primary appears to be an Al v main sequence star of mass and radius ∼2.3R . The secondary fills its Roche lobe; it can be represented by a K0iii star of mass and radius ∼6.0R . Better spectroscopic data are needed for confirmation of these results.  相似文献   

14.
We analyzed high-precision Kepler photometry and high–resolution UVES and GIRAFFE spectroscopy from ESO Science Archieve for a double–lined eclipsing binary star in the field of the high metallicity old open cluster NGC 6791. Earlier measurements of the masses and radii of the detached system were not accurate enough for photometric and spectroscopic data to demonstrate that there are significant differences between current stellar models. Here we improved on the result and add follow-up measurements of the system. Data from the Kepler archive makes it clear that the system has an inclination that is close to 90°. The combination of radial velocity and Kepler light curve of the system were analysed simultaneously, which allows us to determine a reliable mass for the primary and secondary star and radii for both stars, and to constrain the cluster age. The characteristics of the primary star at the cluster turnoff indicate an age of 8.5 ± 0.12 Gyr, consistent with earlier analysis of the color–magnitude diagram. The brighter star in the binary also produces a precision estimate of the distance modulus, independent of reddening estimates: (m-M)V (mag)=13.899 ± 0.117. The secondary star is not expected to have evolved significantly, but its radius is more than 10% larger than predicted by models. The hallmark is useful for testing the idea that radius inflation can occur in short period binaries for stars with significant convective envelopes due to the inhibition of energy transport by magnetic fields.  相似文献   

15.
Synthetic light curve solutions for the W UMa-system VW Cep have been determined by applying the most new version of Wilson (1998)approach to B-observations of 1996 and VRI-observations of 1999. From a consideration of the possible evolution of this system, it is found that the system is a partial eclipsing contact one, and its primary to be a nearly Main-Sequence F5 star of mass 0.85 M and the secondary to be a dwarf of spectral type G0 of mass 0.34 M . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
In this paper we present a method for computing the equilibrium structures and various physical parameters of a primary component of the binary system assuming that the primary is more massive than the secondary and is rotating differentially according to the law of the w2 = b0 + b1 × s2 + b2 × s4, w being the angular velocity of rotation of a fluid element distant s from the axis of rotation and b0, b1, b2 suitably chosen numerical constants. This method utilizes the averaging approach of Kippenhahn and Thomas (1997) and the concept of Roche equipotentials in a manner earlier used by Mohan et al. (1997) to incorporate the effects of rotation and tidal distortions on the equilibrium structures of certain rotationally and tidally distorted stellar models. The use of the method has been illustrated by applying it to obtain the structures and some observable parameters of certain differentially rotating and tidally distorted binary systems whose primary component is assumed to be a white dwarf star.  相似文献   

17.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A phenomenological model for V 361 Lyr is proposed. Probably it is a binary system which consists of a mass accreting primary star with mass of about M1 ≈ 0·81 M⊙ and radius R1 ≈ (6.1 ± 0·4) · 1010 cm and a mass losing secondary with about M2 ≈ 0·77 M⊙ and R2 ≈ 5.8 · 1010 cm. The secondary fills its Roche lobe, but the primary is something smaller than this lobe, contrary to the models of W UMa-type systems. So the hot spot appears in the atmosphere of the primary, but not in a disk, like in cataclysmic variables. The luminosity of the hot spot, L = (6-15) · 1032 erg/s, is large enough to be the main emission source of the system in visible light. So phenomenologically the object may be somewhat between W UMa-type stars and cataclysmic variables.  相似文献   

19.
Results from optical photometric observations of the PMS star V 1735 Cyg are reported. The star is located in the IC 5146 dark cloud complex—a region of active star formation. On the basis of observed outburst and spectral properties, V 1735 Cyg was classified as a FUor object. We present data from BVRI CCD photometric observations of the star, collected from March 2003 to January 2009. Plates from the Rozhen Schmidt telescope archive were scanned for a brightness estimation of the star. A sequence of sixteen comparison stars in the field of V 1735 Cyg was calibrated in BVRI bands. The data from photographic observations made from 1986 to 1992 show a strong light variability (ΔV=1m2). In contrast, the recent photometric data obtained from 2003 to 2009 show only small amplitude variations (ΔI=0m3). The analysis of existing photometric data shows a very slow decrease in star brightness—1m8 (R) for a 44 year period. The possibilities for future photometric investigations of V 1735 Cyg using the photographical plate archives is discussed briefly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号