首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When the perturbation affecting a Keplerian motion is proportional tor n (n3), a canonical transformation of Lie type will convert the system into one in which the perturbation is proportional tor –2. Because it removes parallactic factors, the transformation is called the elimination of the parallax.In the main problem for the theory of artificial satellites, the elimination of the parallax has been conducted by computer to order 4. The first order in the reduced system may now be integrated in closed form, thereby revealing the fundamental property of the first-order intermediary orbits in line with Newton's Propositio XLIV.Extension beyond order 1 leads to identify a new class of intermediaries for the main problem in nodal coordinates, namely the radial intermediaries.The technique of smoothing a perturbation prior to normalizing the perturbed Keplerian system, of which the elimination of the parallax is an instance, is applied to derive the intermediaries in nodal coordinates proposed by Sterne, Garfinkel, Cid-Palacios and Aksnes, and to find the canonical diffeomorphisms which relate them to one another and to the radial intermediaries.  相似文献   

2.
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the system can be reduced to a Hamiltonian system with configuration space of a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable and we find horseshoes due to the eccentricity of the orbit. In the caseI 3/I 1>4/3, we prove that the system on the sphere is also analytical nonintegrable.On leave from the Polytechnic Institute of Bucharest, Romania.  相似文献   

3.
Taking advantage of the radial intermediaries and the regularization and linearization methods, the zonal Earth satellite theory is studied in the polar nodal canonical set of variables (, , ,R, ¡,N).The variable is eliminated in the first order of the Hamiltonian by applying Deprit's method. Then, the elimination of the perigee is carried out by another canonical transformation. As a consequence, a new radial intermediary, which contains all theJ 2n(n1) harmonics, is given. A comparison with the previous radial intermediaries of Cid and Lahulla, Deprit and Alfriend and Coffey is made.Finally, a regularizing transformation which allows us to linearize part of the radial intermediary is proposed, and an analytical study of this process is presented.  相似文献   

4.
This work derives the linearized equations of motion, the Lagrangian density, the Hamiltonian density, and the canonical angular momentum density for general perturbations [∝ exp (imφ) with m = 0, ± 1, ...] of a geometrically thin self-gravitating, homentropic fluid disk including the pressure. The theory is applied to “eccentric,” m = ± 1 perturbations of a geometrically thin Keplerian disk. We find m = 1 modes at low frequencies relative to the Keplerian frequency. Further, it is shown that these modes can have negative energy and negative angular momentum. The radial propagation of these low-frequency m = 1 modes can transport angular momentum away from the inner region of a disk and thus increase the rate of mass accretion. Depending on the radial boundary conditions there can be discrete low-frequency, negative-energy, m = 1 modes.  相似文献   

5.
Short-term satellite onboard orbit propagation is required when GPS position measurements are unavailable due to an obstruction or a malfunction. In this paper, it is shown that natural intermediary orbits of the main problem provide a useful alternative for the implementation of short-term onboard orbit propagators instead of direct numerical integration. Among these intermediaries, Deprit’s radial intermediary (DRI), obtained by the elimination of the parallax transformation, shows clear merits in terms of computational efficiency and accuracy. Indeed, this proposed analytical solution is free from elliptic integrals, as opposed to other intermediaries, thus speeding the evaluation of corresponding expressions. The only remaining equation to be solved by iterations is the Kepler equation, which in most of cases does not impact the total computation time. A comprehensive performance evaluation using Monte-Carlo simulations is performed for various orbital inclinations, showing that the analytical solution based on DRI outperforms a Dormand–Prince fixed-step Runge–Kutta integrator as the inclination grows.  相似文献   

6.
7.
The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit constitute a system of equations that determines the evolution of the particle’s orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar System is also investigated. We consider icy particles with radii from 1 to 10 μm. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 105 to 2 × 106 years, approximately.  相似文献   

8.
We propose the Ptolemaic transformation: a canonical change of variables reducing the Keplerian motion to the form of a perturbed Hamiltonian problem. As a solution of the unperturbed case, the Ptolemaic variables define an intermediary orbit, accurate up to the first power of eccentricity, like in the kinematic model of Claudius Ptolemy. In order to normalize the perturbed Hamiltonian we modify the recurrent Lie series algorithm of HoriuuMersman. The modified algorithm accounts for the loss of a term's order during the evaluation of a Poisson bracket, and thus can be also applied in resonance problems. The normalized Hamiltonian consists of a single Keplerian term; the mean Ptolemaic variables occur to be trivial, linear functions of the Delaunay actions and angles. The generator of the transformation may serve to expand various functions in Poisson series of eccentricity and mean anomaly.  相似文献   

9.
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy–Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4–0.45 in eccentricity and 40–45\(^\circ \) in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy–Wiltshire solution in curvilinear coordinates is also presented.  相似文献   

10.
Numerical integration of unstable differential equations should be avoided since a numerical error during thenth step produces erroneous initial values for the next step and thus deteriorates the subsequent integration in an unstable manner. A method is offered to stabilize the equations of motion corresponding to a given HamiltonianH by transformingH into a new HamiltonianH * which is equivalent to the Hamiltonian of a harmonic oscillator. In contrast to other methods of stabilization the realm of canonical mechanics is thus not abandoned. Perturbations are discussed and as examples the Keplerian motion and the motion of a gyroscope are presented.  相似文献   

11.
The secular terms of the planetary disturbing function are given, after elimination of short period terms by von Zeipel's transformation. The adequacy of this expansion up to terms of eighth order in the inclination and eccentricity is investigated by numerical processes, as a function of the Keplerian elementsa, e andi. The eccentricityé of the outer planet, is taken equal to zero. It is concluded that for values ofi which are not small the inclusion of additional terms in the expression for the disturbing function, results to drastic changes in its values, while larger values ofe do not have an equaly large effect on the disturbing function.  相似文献   

12.
In the publication Baumgarte and Stiefel (1974a) a stabilization of the Keplerian motion was offered by making use of a manipulation of the Hamiltonian. By this stabilization technique the given HamiltonianH(p i,q i) is replaced by a new HamiltonianH *, which leads to Lyapunov-stable differential equations of motion.Whereas, in the quoted publication, the physical timet was used as the independent variable we now develop a generalization which allows to combine the stabilization with the introduction of a new independent variables. Such a fictitious times is popular for achieving an analytic step-size adaptation (Baumgarte and Stiefel, 1974c). Perturbations of Kepler motion are discussed.  相似文献   

13.
This paper is a contribution to the Theory of the Artificial Satellite, within the frame of the Lie Transform as canonical perturbation technique (elimination of the short period terms). We consider the perturbation by any zonal harmonic J n (n ≥ 2) of the primary on the satellite, what we call here the complete zonal problem of the artificial satellite. This is quite useful for primaries with symmetry of revolution. We give an analytical formula to compute directly the first order averaged Hamiltonian. The computation is carried out in closed form for all terms, avoiding therefore tedious expansions in the eccentricity or in any anomaly; this feature makes the averaging process, not only valid for all kind of elliptic trajectories but at the same time it yields the averaged Hamiltonian in a very short and compact way. The formula allows us to now skip the averaging process, which means an asymptotic gain of a factor 3n/2 regarding the computational cost of the n th zonal. Our analytical formulae have been widely checked, by comparison on one hand with published works (Brouwer, 1959) (which contained results for particular zonal harmonics, let’s say typically from J 2 to J 8), and on the other hand with the results of 3 symbolic manipulation software, among which the MM (standing for ‘Moon’s series Manipulator’), which has already been used and described in (De Saedeleer B., 2004). Additionally, the first order generator associated with this transformation is given into the same closed form, and has also been validated.  相似文献   

14.
In Sections 1–6, we determine an approximate analytical model for the density and temperature distribution in the protoplanetary could. The rotation of the planets is discussed in Section 7 and we conclude that it cannot be determined from simple energy conservation laws.The velocity of the gas of the protoplanetary cloud is found to be smaller by about 5×103 cm s–1 in comparison to the Keplerian circular velocity. If the radius of the planetesimals is smaller than a certain limitr 1, they move together with the gas. Their vertical and horizontal motion for this case is studied in Sections 8 and 9.As the planetesimals grow by accretion their radius becomes larger thanr 1 and they move in Keplerian orbits. As long as their radius is betweenr 1 and a certain limitr 2 their gravitational interaction is negligible. In Section 10, we study the accretion for this case.In Section 11, we determine the change of the relative velocities due to close gravitational encounters. The principal equations governing the late stages of accretion are deduced in Section 12, In Section 13 there are obtained approximate analytical solutions.The effect of gas drag and of collisions is studied in Sections 14 and 15, respectively. Numerical results and conclusions concerning the last and principal stage of accretion are drawn in Section 16.  相似文献   

15.
The D'Alembert model for the spin/orbit problem in celestial mechanics is considered. Using a Hamiltonian formalism, it is shown that in a small neighborhood of a p:q spin/orbit resonance with (p,q) different from (1,1) and (2,1) the 'effective' D'Alembert Hamiltonian is a completely integrable system with phase space foliated by maximal invariant curves; instead, in a small neighborhood of a p:q spin/orbit resonance with (p,q) equal to (1,1) or (2,1) the 'effective' D'Alembert Hamiltonian has a phase portrait similar to that of the standard pendulum (elliptic and hyperbolic equilibria, separatrices, invariant curves of different homotopy). A fast averaging with respect to the 'mean anomaly' is also performed (by means of Nekhoroshev techniques) showing that, up to exponentially small terms, the resonant D'Alembert Hamiltonian is described by a two-degrees-of-freedom, properly degenerate Hamiltonian having the lowest order terms corresponding to the 'effective' Hamiltonian mentioned above.  相似文献   

16.
This paper presents a Hamiltonian approach to modelling spacecraft motion relative to a circular reference orbit based on a derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, called epicyclic elements. The influence of higher order terms and perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of parameters procedure. As an example, closed-form solutions for J2-invariant orbits are obtained.  相似文献   

17.
This paper builds upon the work of Palmer and Imre exploring the relative motion of satellites on neighbouring Keplerian orbits. We make use of a general geometrical setting from Hamiltonian systems theory to obtain analytical solutions of the variational Kepler equations in an Earth centred inertial coordinate frame in terms of the relevant conserved quantities: relative energy, relative angular momentum and the relative eccentricity vector. The paper extends the work on relative satellite motion by providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, including the zero angular momentum case. The geometrical framework assists the design of complex formation flying trajectories. This is demonstrated by the construction of a tetrahedral formation, described through the relevant conserved quantities, for which the satellites are on highly eccentric orbits around the Sun to visit the Kuiper belt.  相似文献   

18.
19.
As stars close to the galactic centre have short orbital periods it has been possible to trace large fractions of their orbits in the recent years. Previously the data of the orbit of the star S2 have been fitted with Keplerian orbits corresponding to a massive black hole (MBH) with a mass of MBH = 3–4 × 106M implying an insignificant cusp mass. However, it has also been shown that the central black hole resides in a ∼1″ diameter stellar cluster of a priori unknown mass. In a spherical potential which is neither Keplerian nor harmonic, orbits will precess resulting in inclined rosetta shaped trajectories on the sky. In this case, the assumption of non‐Keplerian orbits is a more physical approach. It is also the only approach through which cusp mass information can be obtained via stellar dynamics of the cusp members. This paper presents the first exemplary modelling efforts in this direction. Using positional and radial data of star S2, we find that there could exist an unobserved extended mass component of several 105M forming a so‐called ‘cusp’ centered on the black hole position. Considering only the fraction of the cusp mass Mequation/tex2gif-inf-4.gif within the apo‐center of the S2 orbit we find as an upper limit that Mequation/tex2gif-inf-6.gif/(MBH + Mequation/tex2gif-inf-9.gif) ≤ 0.05. A large extended cusp mass, if present, is unlikely to be composed of sub‐solar mass constituents, but could be explained rather well by a cluster of high M/L stellar remnants, which we find to form a stable configuration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号