首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice‐marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice‐proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris‐rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations.  相似文献   

2.
云南千湖山第四纪冰川发育特点与环境变化   总被引:2,自引:0,他引:2  
千湖山(4249 m) 是横断山脉中段保存确切第四纪冰川遗迹的山地,受西南季风影响强烈。对于研究青藏高原边缘山地冰川发育与气候和构造之间的耦合关系具有十分重要的科学意义。在千湖山海拔3500 m以上保存着古冰川侵蚀与堆积地貌,冰川发育依托海拔4000~4200 m的夷平面及其支谷地形。冰川形态类型为小型的冰帽以及由冰帽边缘溢流进入山谷的山谷冰川。应用相对地貌法,光释光(OSL) 年代测试,本文确定千湖山地区的冰进系列:末次冰盛期(LGM,22.2±1.9 ka BP)、末次冰期中期(MIS3b,37.3±3.7 ka BP、45.6±4.3 ka BP45.6±4.3 ka BP)、末次冰期早期(MIS4)。千湖山冰川前进规模是MIS3b 阶段大于末次冰盛期,主要原因是末次冰期中期(MIS3b) 时本区气候相对湿润,而在末次冰盛期(MIS2) 时气候条件比较干燥。在总体相似的气候背景下,与横断山其它存在多期次冰川作用的山地相比,千湖山只发育末次冰期的冰川作用,其差异性说明该地区冰川发育主要受山体构造抬升控制。  相似文献   

3.
Storglaciären is a 3.2 km long polythermal valley glacier in northern Sweden. Since 1994 a number of small (1–2 m high) transverse debris‐charged ridges have emerged at the ice surface in the terminal zone of the glacier. This paper presents the results of a combined structural glaciological, isotopic, sedimentological and ground‐penetrating radar (GPR) study of the terminal area of the glacier with the aim of understanding the evolution of these debris‐charged ridges, features which are typical of many polythermal glaciers. The ridges originate from steeply dipping (50–70°) curvilinear fractures on the glacier surface. Here, the fractures contain bands of sediment‐rich ice between 0.2 and 0.4 m thick composed of sandy gravel and diamicton, interpreted as glaciofluvial and basal glacial material, respectively. Structural mapping of the glacier from aerial photography demonstrates that the curvilinear fractures cannot be traced up‐glacier into pre‐existing structures visible at the glacier surface such as crevasses or crevasse traces. These curvilinear fractures are therefore interpreted as new features formed near the glacier snout. Ice adjacent to these fractures shows complex folding, partly defined by variations in ice facies, and partly by disseminated sediment. The isotopic composition (δ18O) of both coarse‐clear and coarse‐bubbly glacier ice facies is similar to the isotopic composition of the interstitial ice in debris layers that forms the debris‐charged ridges, implying that none of these facies have undergone any significant isotopic fractionation by the incomplete freezing of available water. The GPR survey shows strong internal reflections within the ice beneath the debris‐charged ridges, interpreted as debris layers within the glacier. Overall, the morphology and distribution of the fractures indicate an origin by compressional glaciotectonics near the snout, either at the thermal boundary, where active temperate glacier ice is being thrust over cold stagnant ice near the snout, or as a result of large‐scale recumbent folding in the glacier. Further work is required to elucidate the precise role of each of these mechanisms in elevating the basal glacial and glaciofluvial material to the ice surface.  相似文献   

4.
Enhanced delivery of water‐saturated, ice‐marginal sediments to the glacier surface is a response to glacier thinning that has the potential to increase both levels of sediment transfer through the glacier hydrological system and total basin sediment yields. Preliminary observations made during summer 2007 at Austre Brøggerbreen, Svalbard, confirm that ice‐marginal debris flows in the upper reaches of the glacier are actively delivering sediments to the glacier surface, which may then be flushed into the glacier's hydrological system. During a four‐day observation period, several stochastic pulses in water turbidity were observed at a single portal where solely supra‐ and englacial drainage emerge at the glacier margin. The erratic suspended sediment fluxes were hypothesized to originate from ice‐marginal sources. Quantitative analysis of continuous turbidity and discharge data confirm that discharge is not driving these turbidity pulses and, combined with observational data, that the most likely origin is the delivery of water‐saturated sediments to the glacier surface from ice‐marginal, debris flows with subsequent transfer to the portal via the glacial drainage system. These observations illustrate the potential importance of the paraglacial component to the overall sediment cascade of deglaciating basins and highlight the need for careful interpretation of turbidity records, where stochastic pulses in turbidity may be attributed to sources and processes other than ice‐marginal sediment inputs.  相似文献   

5.
Spatially variable sedimentation patterns are described for a small montane lake in southwestern British Columbia through the analysis of contemporary (20th century) varve sequences recovered from a high-density sediment coring program. Average, moderate, extreme, and localized depositional regimes, resolved at decadal to intra-annual scales, are differentiated for the Green Lake system from the stratigraphic record based on the volume and areal extent of the associated deposits. Average-regime sedimentation is mediated by the reliable annual freshet for the catchment. Moderate-regime events of the contemporary period (1930–2000) include periods of rapid glacial recession, extreme late-summer and autumn rainstorm-generated floods, and unusual snowmelt conditions. Only exceptional rainstorm events have led to extreme-regime sedimentation in the lake basin. Spatial sedimentation patterns are quantified by empirically derived surface models. Systematic differences are observed between both moderate and extreme sediment delivery events and the defined average-regime model. Substantial differences are observed between average and extreme regimes because of associated changes in sediment bypassing effects, intermediate sub-basin trapping, and sediment focusing mechanisms. Localized deposits coincide with isolated winter rainstorms in the region and anthropogenic disturbances along lake shorelines. Results indicate that the assumption of areal continuity in lacustrine sedimentation is not always appropriate for making comparisons between the identified depositional regimes. Sediment sampling programs that do not capture these spatially fluctuating sedimentation patterns may lead to biased accumulation chronologies and erroneous paleoenvironmental assessments of important hydroclimatic events.  相似文献   

6.
The status of tropical glaciers is enormously important to our understanding of past, present, and future climate change, yet lack of continuous quantitative records of alpine glacier extent on the highest mountains of tropical East Africa prior to the 20th century has left the timing and drivers of recent glacier recession in the region equivocal. Here we investigate recent changes (the last 150–700 years) in lacustrine sedimentation, glacier extent, and biogeochemical processes in the Rwenzori Mountains (Uganda- Democratic Republic of Congo) by comparing sedimentological (organic and siliciclastic component determined by loss-on-ignition; LOI) and organic geochemical profiles (carbon and nitrogen abundance, ratio, and isotopic composition of sedimentary organic matter) from lakes occupying presently glaciated catchments against similar profiles from lakes located in catchments lacking glaciers. The siliciclastic content of sediments in the ‘glacial lakes’ significantly decreases towards the present, whereas ‘non-glacial lakes’ generally show weak trends in their siliciclastic content over time, demonstrating that changes in the siliciclastic content of glacial lake sediments primarily record fluctuations in glacier extent. Radiometric dating of our sediment cores indicates that prior to their late 19th-century recession Rwenzori glaciers stood at expanded ‘Little Ice Age’ positions for several centuries under a regionally dry climate regime, and that recession was underway by 1870 AD, during a regionally wet episode. These findings suggest that the influence of late 19th century reductions in precipitation in triggering Rwenzori glacier recession is weaker than previously thought. Our organic geochemical data indicate that glacier retreat has significantly affected carbon cycling in Afroalpine lakes, but trends in aquatic ecosystem functioning are variable among lakes and require more detailed analysis.  相似文献   

7.
ABSTRACT. In order to perform inverse modelling of climate variability based on palaeoclimate proxy records, the complexity of intermediate steps in the chain of processes from the climate forcing to the responding proxy has to be considered. In reconstructing climate-forced glacier fluctuations from proglacial lacustrine sediments it is important to understand how climate affects glacier dynamics. A glacier system is complex with many factors influencing sediment production, transport and deposition. Fluvial and mass movement processes in the proglacial environment may affect lake sedimentation substantially. We argue that it is easy to over-interpret glaciolacustrine sediment variability by ignoring these complications. The sediment records may contain individual layers resulting from single precipitation or melt events, as well as persistent changes in climate-forced glacier dynamics. We conclude that it is necessary to consider all possible influencing factors in order to derive reliable palaeoclimate data from lacustrine sediment sequences.  相似文献   

8.
Most of the last glacial maximum (LGM) glacier record west of the southern Andes (40–55° S) is today submerged under the Pacific Ocean and therefore the Archipiélago de Chiloé (42–43° S) provides an unusual opportunity to study local sediment and landform associations to help understand paleoglacial features of the former Patagonian ice sheet (PIS). In this context, this work presents the first comprehensive glacial geomorphologic mapping of the central region of the Archipiélago de Chiloé, which is located in a transitional geomorphic region between the Chilean Lake District (CLD, 39–41° S, 73° W) and northwest Patagonia (~43–48° S, 74° W). The Chilotan glacial geomorphology and sediment associations resulted from a warm‐based glacier that characterizes a typical active glacial temperate landsystem, which in central Chiloé combines deposits and landform units originated in subglacial and subaerial environments. Paleoglacial features that occur in central Chiloé are characteristic of an ice‐sheet style of glaciation, which differentiates it from a typical Alpine glacial style defined previously for the CLD. Therefore, the Archipiélago de Chiloé represents a geographical break point where the PIS became the large ice mass that occupied the Patagonian Andes during the last glacial period (Llanquihue Glaciation). A double ice‐contact slope on the east face of the Cordillera de La Costa provides evidence for the most extensive Early Llanquihue glacial advance on Isla Grande de Chiloé. The most prominent LGM advance in the area occurred at 26 000 cal yr BP, coincident with regional stadial conditions, and is defined by a big moraine along the east coast of the island.  相似文献   

9.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

10.
A modified ice-tongue model suggests that subglacial, saturated, fine sediment derived from local bedrock sources reduced basal shear strength and lowered the ice surface gradient sufficiently to produce ice tongues 20 km long in all major north-south oriented valleys on the northeastern Appalachian Plateau, while adjacent uplands were virtually ice-free. Associated environments of deposition produced two different landform assemblages, one representative of active ice retreat in through valleys and another that depicts widespread stagnation in non-through valleys.Pebble count data indicate that sediment transport by glacial flow was important to the moraine-building process, but the occurrence of isolated kame fields suggests an origin linked to inwash from major upland tributaries.All coarse valley fill (sand and gravel) is derived from two basic sources: (1) re-worked upland drift, and (2) resedimented debris from upvalley sources, including the glacier. Processes common to through valleys favor upvalley sources and active ice landforms, whereas inwash and stagnant ice sedimentation are typical of non-through valleys. Although extensive ice-free uplands served as a source of some fine sediment, a comparison of sediment volume to upland area indicates that inwash processes could not have yielded sufficient fines to account for the volume of fine sand and silt found within the valley fill. Meltwater flow via subglacial tunnels discharged saturated, fine sediment directly into proglacial lakes and served as the major source and transport mechanism for most sand and silt.The Laurentide deglacial environment throughout the upper Susquehanna region was characterized by proglacial lakes, detached remnant ice masses, dead-ice sedimentation and collapsed ice tongues. Stagnation and downwasting in ice-contact lakes peripheral to the eastern Bering Piedmont Glacier, Alaska, serve to depict analog conditions for retreat in central New York.  相似文献   

11.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

12.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   

13.
1 IntroductionIthas been accepted thatthe glacialextentin the early stage w as largerthan thatin the late stagein Eastern A sia during the Last G laciation and w as different from Europe and N orth A m erica(Li, 1992; Cui et al., 2000). M any scholars hav…  相似文献   

14.
New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. It is asynchronous with the Northern Hemisphere ice sheets maximum and changes in oceanic circulation that predominately control global climate. In research areas, three seasonal precipitation patterns control the accumulation and ablation of glaciers. The modes of the westerlies and the East Asian mountains/islands in and along the Pacific Ocean are favorable to glacier advance with mainly winter precipitation accumulation. There was a global temperature-decreasing phase in the middle stage (MIS3b, 54-44 ka BP), when the glacier extent was larger than that in Last Glaciation Maximum due to the low temperature combined with high moisture. It is revealed that the Quaternary glaciers not only evolved with localization, but also maybe with globalization. The latest studies show a fact that the developmental characteristics of glaciers in high mountains or islands along the western Pacific Ocean are not in accord with those inland areas. Therefore, it can be concluded that glacier development exhibits regional differences. The study validates the reasonableness of the asynchronous advance theory, and ascertains that both the synchronous and asynchronous advance/retreat of glaciers existed from 30 ka BP to 10 ka BP. It is not suitable to emphasize the synchronicity between global ice-volume and glacier change.  相似文献   

15.
In many areas of Svalbard, the Neoglacial terminal deposits represent the Holocene glacial maximum. The glaciers began the retreat from their Neoglacial maximum positions around 1900 AD. Based on high resolution acoustic data and sediment cores, sedimentation patterns in four tidewater glacier-influenced inlets of the fjord Isfjorden (Tempelfjorden, Billefjorden, Yoldiabukta and Borebukta), Spitsbergen, were investigated. A model for sedimentation of tidewater glaciers in these High Arctic environments is proposed. Glacigenic deposits occur in proximal and distal basins. The proximal basins comprise morainal ridges and hummocky moraines, bounded by terminal moraines marking the maximum Neoglacial ice extent. The distal basins are characterized by debris lobes and draping stratified glacimarine sediments beyond, and to some extent beneath and above, the lobes. The debris lobe in Tempelfjorden is composed of massive clayey silt with scattered clasts. Distal glacimarine sediments comprise stratified clayey silt with low ice-rafted debris (IRD) content. The average sedimentation rate for the glacimarine sediments in Tempelfjorden is 17 mm/yr for the last ca. 130 years. It is suggested that the stratified sediments in Tempelfjorden are glacimarine varves. The high sedimentation rate and low IRD content are explained by input from rivers, in addition to sedimentation from suspension of glacial meltwater. The debris lobes in Borebukta are composed of massive clayey silt with high clast content. Distal glacimarine sediments in Yoldiabukta comprise clayey silt with high IRD content. The average sedimentation rate for these sediments is 0.6 mm/yr for the last 2300 years.  相似文献   

16.
Basal shear stress and sediment strength associated with the development of glacial flutes exposed during the 20th century in the Saskatchewan Glacier Valley Alberta, Canada, were determined by comparing reconstructed ice thicknesses, basal shear stresses, and field properties of sediments with the morphologically similar Kiwa Glacier Valley, British Columbia, Canada, where flutes are absent. Reconstructed subglacial conditions in these two valleys were compared to understand why flutes were developed in the former and not the latter. Using an existing topographic map of each glacier, equations for a series of longitudinal profile lines were determined to represent the existing ice surface. A previous ice surface, identified by trimlines along the valley walls, was reconstructed by applying the equations of longitudinal profile lines from the existing ice surface to a previous terminus between 5 and 10 km downvalley. After subtracting the elevation of the land surface (determined from topographic maps) from the reconstructed glacier surface, and calculating former ice surface slope, ice thickness and basal shear stress distributions were determined. Sediment texture and the location of flutes on a morainal topographic high, downglacier from a proglacial lake basin, allowed high porewater pressures to develop as glaciers extended to terminus positions in the Saskatchewan Glacier Valley. Sediment strength was reduced sufficiently below values of reconstructed shear stress plots to allow deformation creating flutes. The absence of a similar topographic high and different sediment textural characteristics in the Kiwa Glacier Valley resulted in lower porewater pressures and consequently less reduction in sediment strength preventing the development of glacial flutes despite higher shear stress values here. Results indicate that the degree to which sediment characteristics and porewater pressure allow reduction of subglacial sediment strength relative to basal shear stress is important in determining conditions when flutes may develop.  相似文献   

17.
天山1号冰川厚度和冰下地形探测与冰储量分析   总被引:12,自引:0,他引:12       下载免费PDF全文
通过对天山乌鲁木齐河源 1号冰川的雷达回波探测 ,清晰地揭示出冰川底部冰 /岩界面的位置及其起伏变化特征 ,显示出雷达波对山地冰川良好的穿透能力和对冰下地形的高分辨能力 ,冰川雷达测厚的误差小于 1 .2 %。研究结果显示 ,1号冰川东支冰川平均厚度为 5 8.77m ,西支冰川平均厚度为 44.84m ,冰体厚度最大值发育于冰川中部趋于主流线位置。冰川冰储量计算表明 ,东支冰储量为 0 .0 5 1 868km3,西支冰储量为 0 .0 2 0 2 1 0km3。表面和底部地形有明显差异 ,主要因冰川动力过程对基岩强烈的地貌作用所致 ,意味着冰床的起伏地形对冰川浅层冰体的运动过程影响不显著。  相似文献   

18.
19.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

20.
Despite spectacular landform evidence of a dominant role for glacial action in shaping landscapes under former northern hemisphere ice sheets, there is little quantitative evidence for rates and patterns of erosion associated with specific glaciations. Here we use cosmogenic nuclide data to assess rates of subglacial erosion underneath the Fennoscandian ice sheet. By testing whether there are remnant nuclide concentrations in samples taken from sites that include both relict areas and features and landscapes typically associated with vigorous glacial erosion, we can constrain the level and pattern of modification that resulted from the last glaciation. Cosmogenic 10Be and 36Cl data from the Torneträsk region confirm the temporal and spatial variability of glacial erosion suggested by geomorphological mapping. At some sites, glacial erosion estimates in what appear to be heavily scoured areas indicate erosion of only c. 2 ± 0.4 m of bedrock, based on cosmogenic nuclide inheritance. This implies that the generation of severely scoured terrain in this study area required multiple glaciations. The overall modification produced by ice sheets along glacial corridors may be more restricted than previously thought, or may have occurred preferentially during earlier Quaternary glacial periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号