首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   

2.
We report new helium isotope results for 49 basalt glass samples from the Mid-Atlantic Ridge between 1°N and 47°S.3He/4He in South Atlantic mid-ocean ridge basalts (MORB) varies between 6.5 and 9.0 RA (RA is the atmospheric ratio of1.39 × 10−6), encompassing the range of previously reported values for MORB erupted away from high3He/4He hotspots such as Iceland. He, Sr and Pb isotopes show systematic relationships along the ridge axis. The ridge axis is segmented with respect to geochemical variations, and local spike-like anomalies in3He/4He, Pb and Sr isotopes, and trace element ratios such as(La/Sm)N are prevalent at the latitudes of the islands of St. Helena, Tristan da Cunha and Gough to the east of the ridge. The isotope systematics are consistent with injection beneath the ridge of mantle “blobs” enriched in radiogenic He, Pb and Sr, derived from off-axis hotspot sources. The variability in3He/4He along the ridge can be used to refine the hotspot source-migrating-ridge sink model.

MORB from the 2–7°S segment are systematically the least radiogenic samples found along the mid-ocean ridge system to date. Here the depleted mantle source is characterized by87Sr/86Sr of 0.7022, Pb isotopes close to the geochron and with206Pb/204Pb of 17.7, and3He/4He of 8.6–8.9 RA. The “background contamination” of the subridge mantle, by radiogenic helium derived from off-ridge hotspots, displays a maximum between 20 and 24°S. The HePb and HeSr isotope relations along the ridge indicate that the3He/4He ratios are lower for the hotspot sources of St. Helena, Tristan da Cunha and Gough than for the MORB source, consistent with direct measurements of3He/4He ratios in the island lavas. Details of the HeSrPb isotope systematics between 12 and 22°S are consistent with early, widespread dispersion of the St. Helena plume into the asthenosphere, probably during flattening of the plume head beneath the thick lithosphere prior to continental breakup. The geographical variation in theHe/Pbratio deduced from the isotope systematics suggests only minor degassing of the plume during this stage. Subsequently, it appears that the plume component reaching the mid-Atlantic ridge was partially outgassed of He during off-ridge hotspot volcanism and related melting activity.

Overall, the similar behavior of He and Pb isotopes along the ridge indicates that the respective mantle sources have evolved under conditions which produced related He and Pb isotope variations.  相似文献   


3.
Fresh basalt glasses from the North Chile Ridge (NCR) in the southeastern Pacific have Ne isotopic compositions distinctly different from typical mid-ocean ridge basalts (MORB). In a three-isotope plot of 20Ne/22Ne vs. 21Ne/22Ne, the NCR data define a correlation line with a slope smaller than that of the MORB correlation line, i.e. their Ne composition is more nucleogenic than that of MORB. 3He/4He ratios are slightly lower than the MORB average, whereas in a few stepwise heating fractions very high 40Ar/36Ar ratios up to 28,000 are found. One model to explain the data assumes contamination of the NCR mantle source by material from the continental or oceanic crust, but in addition to difficulties with quantitatively reconciling the noble gas patterns with such a model it seems unable to account for some geochemical characteristics of NCR basalts reported earlier [Bach et al., Earth Planet. Sci. Lett. 142 (1996) 223–240], such as depletions in highly incompatible elements and unradiogenic Sr isotope compositions. Therefore we favor the scenario of a mantle source which was depleted and degassed previously, possibly as a residue from mantle melting beneath the southern East Pacific Rise that was transported to the NCR and melted again. The time during which such a depleted reservoir would have to be separated from the MORB mantle is estimated at 10–100 Ma based on U/Th–Ne systematics, in reasonable agreement with the time scale deduced from the formation history of the NCR and the temporal evolution of the southeast Pacific.  相似文献   

4.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

5.
We report isotope analyses of helium, neon, argon, and xenon using different extraction techniques such as stepwise dynamic and static crushing, and high-resolution stepwise heating of three mantle xenoliths from Réunion Island. He and Ne isotopic compositions were similar to previously reported Réunion data, yielding a more radiogenic composition when compared to the Hawaiian or Icelandic mantle plume sources. We furthermore observed correlated 129Xe/130Xe and 136Xe/130Xe ratios following the mantle trend with maximum values of 6.93 ± 0.14 and 2.36 ± 0.06, respectively. High-resolution argon analyses resulted in maximum 40Ar/36Ar ratios of 9000–11,000, in agreement with maximum values obtained in previous studies. We observed a well-defined hyperbolic mixing curve between an atmospheric and a mantle component in a diagram of 40Ar/36Ar vs. 20Ne/22Ne. Using a mantle 20Ne/22Ne of 12.5 (Ne–B) a consistent 40Ar/36Ar value of 11,053 ± 220 in sample ILR 84-4 was obtained, whereas extrapolations to a higher mantle 20Ne/22Ne ratio of 13.8 (solar wind) would lead to a much higher 40Ar/36Ar ratio of 75,000, far above observed maximum values. This favours a mantle 20Ne/22Ne of about 12.5 considered to be equivalent to Ne–B. Extrapolated and estimated 40Ar/36Ar ratios of the Réunion, Iceland, Loihi, and MORB mantle sources, respectively, tend to be linearly correlated with air corrected 21Ne/22Ne and show the same systematic sequence of increasing relative contributions in radiogenic isotopes (Iceland–Loihi–Réunion–MORB) as observed for 4He/3He. In general, He–Ne–Ar isotope systematics of the oceanic mantle can be explained by following processes: (i) different degree of mixing between pure radiogenic and pure primordial isotopes generating the MORB and primitive plume (Loihi-type) endmembers; (ii) relatively recent fractionation of He relative to Ne and Ar, in one or both endmembers; (iii) after the primary fractionation event, different degrees of mixing between melts or fluids of MORB and primitive plume affinity generate the variety of observed OIB data, also on a local scale; (iv) very late-stage secondary fractionation during magma ascent and magma degassing leads to further strong variation in He/Ne and He/Ar ratios.  相似文献   

6.
Basalts from young seamounts situated within 6.8 m.y. of the East Pacific Rise, between 9° and 14°N latitude, display significant variations in 143Nd/144Nd (0.51295–0.51321), 87Sr/86Sr (0.7025–0.7031), and(La/Sm)N (0.415–3.270). Nd and Sr isotope ratios are anti-correlated and form a trend roughly parallel to the “mantle array” on a143Nd/144Nd vs.87Sr/86Sr variation diagram. Nd and Sr isotope ratios display negative and positive correlations, respectively, with(La/Sm)N. The geochemical variations observed at the seamounts are nearly as great or greater than those observed over several hundred kilometers of the Reykjanes Ridge, or at the islands of Iceland or Hawaii.

Samples from one particular seamount, Seamount 6, display nearly the entire observed range of chemical variations, offering an ideal opportunity to constrain the nature of heterogeneities in the source mantle. Systematics indicative of magma mixing are recognized when major elements, trace elements, trace element ratios, and isotope ratios are compared with each other in all possible permutations. The source materials required to produce the end-member magmas are: (1) a typical MORB-source-depleted peridotite; and (2) a relatively enriched material which may represent ancient mantle segregations of basaltic melt, incompletely mixed remnants of subducted ocean crust, or metasomatized peridotite such as that found at St. Paul's Rocks or Zabargad Island. Due to the proximity of the seamounts to the East Pacific Rise (EPR), the source materials are thought to comprise an intimate mixture in the mantle immediately underlying the seamounts and the adjacent EPR. Lavas erupted at the ridge axis display a small range of isotopic and incompatible trace element compositions because the large degrees of melting and presence of magma chambers tend to average the chemical characteristics of large volumes of mantle.

If the postulated mantle materials, with large magnitude, small-scale heterogeneities, are ubiquitous in the upper mantle, chemical variations in basalts ranging from MOR tholeiites to island alkali basalts may reflect sampling differences rather than changes in bulk mantle chemistry.  相似文献   


7.
The isotopic composition of helium emitted from geothermal springs in the southern Tibetan plateau, reported as Rc/RA (Rc=air corrected sample 3He/4He, RA=air 3He/4He), ranges from 0.013 to 0.38, and defines two principal domains. In southernmost central Tibet, helium isotope ratios are typical of radiogenic helium production in the crust (Rc/RA<0.05, crustal helium domain). Further north, there is a resolvable 3He anomaly consistent with a mantle contribution (R/RA>0.1, mantle helium domain). The highest values of 0.27–0.38 RA occur at the southern end of the Karakoram fault. The boundary between the two domains lies 50–100 km north of the Indus-Zangpo suture zone. There seems to be no association between the 3He anomaly and zones of active normal faulting and litho-tectonic crustal units, such as the ultramafic rocks of the Indus-Zangpo suture zone and the Gangdese intrusive belt. Although scavenging of mantle-derived helium, stored in large ultrabasic and basic intrusions in the crust, cannot be ruled out entirely, we argue that the 3He anomaly most plausibly reflects degassing of volatiles from young (Quaternary) mantle-derived melts intruded into the crust. As such, it defines the southern limit of recent mantle melting and mantle melt extraction beneath the Tibetan plateau. The southern limit of the 3He anomaly coincides with the junction between the Indian and Asian plates, in the region where the Indian lithospheric slab steepens and is subducted beneath Tibet as suggested by seismic studies. Recent mantle melting and melt extraction is confined to the Asian mantle, but the southern limit of the melt zone may have migrated northwards during the last 10 Ma as the Indian lithosphere has progressively underthrust the Himalayas and Tibet.  相似文献   

8.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

9.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

10.
Helium isotope geochemistry of some volcanic rocks from Saint Helena   总被引:6,自引:0,他引:6  
3He/4He ratios have been measured for olivine and clinopyroxene phenocrysts in 7–15 m.y. old basaltic lavas from the island of St. Helena. Magmatic helium was effectively resolved from post-eruptive radiogenic helium by employing various extraction techniques, includingin vacuo crushing, and stepwise heating or fusion of the powders following crushing. The inherited3He/4He ratio at St. Helena is 4.3–5.9 RA. Helium isotope disequilibrium is present within the phenocrysts, with lower3He/4He upon heating and fusion of the powders following crushing, due to radiogenic ingrowth or to -particle implantation from the surrounding(U + Th)-rich lavas.

A single crushing analysis for clinopyroxene in a basalt from Tubuaii gave3He/4He= 7.1 RA.3He/4He ratios at St. Helena and Tubuaii (HIMU hotspots characterized by radiogenic Pb isotope signatures) are similar to3He/4He ratios previously measured at Tristan da Cunha and Gough Island (EM hotspots characterized by low206Pb/204Pb). Overall, the HeSrPb isotope systematics at these islands are consistent with a mantle origin as contiguous, heterogeneous materials, such as recycled crust and/or lithosphere.3He/4He ratios at HIMU hotspots are similar to mantle xenoliths which display nearly the entire range of Pb isotope compositions found at ocean islands, and are only slightly less than values found in mid-ocean ridge basalts (7–9 RA). This suggests that the recycled materials were injected into the mantle within the last 109 yrs.  相似文献   


11.
Alkali basalts and nephelinites from the southern end of the East African Rift (EAR) in northern Tanzania have incompatible trace element compositions that are similar to those of ocean island basalts (OIB). They define a considerable range of Sr, Nd and Pb isotopic compositions (87Sr/86Sr= 0.7035−0.7058,εNd = −5to+3, and206Pb/204Pb= 17.5−21.3), each of which partially overlaps the range found in OIB. However, they occupy a unique position in combined Nd, Sr and Pb isotopic compositional space. Nearly all of the lavas have radiogenic Pb, similar to HIMU with high time-integrated238U/204Pb coupled with unradiogenic Nd (+2 to −5) and radiogenic Sr (>0.704), similar to EMI. This combination has not been observed in OIB and provides evidence that these magmas predominantly acquired their Sr, Nd and Pb in the subcontinental lithospheric mantle rather than in the convecting asthenosphere. These data contrast with compositions for lavas from farther north in the EAR. The Pb isotopic compositions of basalts along the EAR are increasingly radiogenic from north to south, indicating a fundamental change to sources with higher time-integratedU/Pb, closer to the older cratons in the south. An ancient underplated OIB melt component, isolated for about 2 Ga as enriched lithospheric mantle and then remelted, could generate both the trace element and isotopic data measured in the Tanzanian samples. Whereas the radiogenic Pb in Tanzanian lavas requires a source with high time-integratedU/Pb, most continental basalts that are thought to have interacted with the continental lithospheric mantle have unradiogenic Pb, requiring a source with a history of lowU/Pb. Such lowU/Pb is readily accomplished with the addition of subduction-derived components, since the lower averageU/Pb of arc basalts (0.15) relative to OIB (0.36) probably reflects addition of Pb from subducted oceanic crust. If the subcontinental lithosphere is normally characterized by low time-integratedU/Pb it would appear that subduction magmatism is more important than OIB additions in supplying the Pb inventory of the lithospheric mantle. However,U/Pb ratios of xenoliths derived from the continental lithospheric mantle suggest that both processes may be important. This apparent discrepancy could be because xenoliths are not volumetrically representative of the subcontinental lithospheric mantle, or, more likely, that continental lithospheric mantle components in basalts are normally only identified as such when the isotopic ratios are dissimilar from MORB or OIB. Lithospheric enrichment from subaccreted OIB components appears to be more significant than generally recognized.  相似文献   

12.
Helium isotope characteristics of Andean geothermal fluids and lavas   总被引:10,自引:0,他引:10  
The first comprehensive helium isotope survey of the Andes is reported here. We have sampled geothermal fluids and phyric lava flows from the Southern (svz) and Central (cvz) Volcanic Zones, the volcanically active Pun˜a region and the Precordillera, Salta Basin, Longitudinal Valley and the aseismic region between the two volcanic zones. Although the active areas are characterised by significant differences in crustal age and thickness, the svz, cvz and Pun˜a are characterised by a wide and overlapping range in 3He/4He ratios (for fluids and phenocrysts) from predominantly radiogenic values to close to the MORB ratio. The measured ranges in 3He/4He ratios (R) (reported normalised to the air 3He/4He—RA) are: svz (0.18 < R/RA< 6.9); cvz (0.82 < R/RA< 6.0); and Pun˜a (1.8 < R/RA< 5.4). Modification of magmatic 3He/4He ratios by water/rock interactions (fluids) or post-eruptive grow-in of radiogenic 4He or preferential diffusive loss of 3He (phenocrysts) is considered unlikely; this means that the wide range reflects the helium isotope characteristics of magma bodies in the Andean crust. The mechanism controlling the 3He/4He ratios appears to be a mixing between mantle (MORB-like) helium and a radiogenic helium component derived from radioactive decay within the magma (magma aging) and/or interaction with 4He-rich country rock: a process expected to be influenced by pre-eruptive degassing of the mantle component. Assimilation of lower crust is also capable of modifying 3He/4He ratios, albeit to a much lesser extent. However, it is possible that the highest measured values in each zone were established by the addition of lower crustal radiogenic helium to MORB helium. In this case, the higher ‘base level’ ratios of the svz would reflect the younger crustal structure of this region. In contrast to helium, there is no overlap in the Sr or Pb isotope characteristics of lavas from the active zones: in all areas, therefore, 3He/4He ratios appear to vary independently of Sr and Pb isotope variations. This decoupling between the lithophile tracers and helium reflects the different processes controlling their isotopic characteristics: crust-mantle interactions, alone, for Sr and Pb but for helium the effects of pre-eruptive degassing and possibly magma aging are possibly superimposed. The presence of mantle helium in the Pun˜a region, and to a lesser extent in the Salta Basin, gives an across-arc perspective to the helium isotope distribution and shows mantle melting to occur significantly to the east of the active arc: this is most probably a consequence of lithospheric delamination. The Precordillera hot spring water has the only pure radiogenic helium signal of the entire sample suite and thus marks the western limit of asthenospheric mantle under the Andes.  相似文献   

13.
High-precision Nb, Ta, Zr, Hf, Sm, Nd and Lu concentration data of depleted mantle rocks from the Balmuccia peridotite complex (Ivrea Zone, Italian Alps) were determined by isotope dilution using multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). The Zr/Hf ratios of all investigated samples from the Balmuccia peridotite complex are significantly lower than the chondritic value of 34.2, and the most depleted samples have Zr/Hf ratios as low as 10. Correlated Zr/Hf ratios and Zr abundances of the lherzolites preserve the trend of a mantle residue that has been depleted by fractional melting. This trend confirms experimental studies that predict Hf to behave more compatibly than Zr during mantle melting. Experimentally determined partition coefficients imply that the major Zr and Hf depletion most likely occurred in the spinel stability field, with (DZr/DHf)cpx≈0.5, and not in the garnet stability field, where (DZr/DHf)grt is probably close to one. However, minor amounts of melting must have also occurred in a garnet facies mantle, as indicated by low Sm/Lu ratios in the Balmuccia peridotites. The Nb/Ta ratios of most lherzolites are subchondritic and vary only from 7 to 10, with the exception of three samples that have higher Nb/Ta ratios (18–24). The overall low Nb/Ta ratios of most depleted mantle rocks confirm a higher compatibility of Ta in the mantle. The uniform Nb/Ta ratios in most samples imply that even in ‘depleted’ mantle domains the budget of the highly incompatible Nb and Ta is controlled by enrichment processes. Such a model is supported by the positive correlation of Zr/Nb with the Zr concentration. However, the overall enrichment was weak and did barely affect the moderately incompatible elements Zr and Hf. The new constraints from the partitioning behaviour of Zr–Hf and Nb–Ta provide important insights into processes that formed the Earth’s major silicate reservoirs. The correlation of Zr/Hf and Sm/Nd in depleted MORB can be assigned to previous melting events in the MORB source. However, such trends were unlikely produced during continental crust formation processes, where Sm/Nd and Zr/Hf are decoupled. The different fractionation behaviour of Zr/Hf and Sm/Nd in the depleted mantle (correlated) and the crust (decoupled) indicates that crustal growth by a simple partial melting process in the mantle has little effect on the mass budget of LREE and HFSE between crust and mantle. A more complex source composition, similar to that of modern subduction rocks, is needed to fractionate the LREE, but not Zr/Hf and the HREE.  相似文献   

14.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

15.
143Nd/144Nd ratios, and Sm and Nd abundances, are reported for particulates from major and minor rivers of the Earth, continental sediments, and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. Overall, Sm/Nd ratios and Nd isotopic compositions in contemporary continental erosion products vary within the small ranges of 147Sm/144Nd= 0.115 ± 0.01 and143Nd/144Nd= 0.51204 ± 0.0002 (εNd = −11.4 ± 4). The average period of residence in the continental crust is estimated to be1.70 ± 0.35Ga.

These results combined with data from the literature have implications for the age, history, and composition of the sedimentary mass and the continental crust: (1) The average “crustal residence age” of the whole sedimentary mass is about 1.9 Ga. (2) The range of Nd isotope compositions in the continent derived particulate input to the oceans is the same as Atlantic sediments and seawater, but lower than those of the Pacific, demonstrating the importance of Pacific volcanism to Pacific Nd chemistry. (3) The average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean. This precludes the likelihood of major mafic to felsic or felsic to mafic trends in the overall composition of the upper continental crust through Earth history. (4) Sediments appear to be formed primarily by erosion of continental crust having similar Sm/Nd ratios, rather than by mixing of mafic and felsic compositions. (5) The average ratio of 143Nd/144Nd≈ 0.5117 (εNd ≈ −17) in the upper continental crust, assuming its mean age is about 2 Ga. (6) The uniformity of the SmNd isotopic systematics in river and aeolian particulates primarily reflects efficient recycling of old sediment by sedimentary processes on a short time scale compared to the amount of time the material has resided in the crust.  相似文献   


16.
The hygromagmatophile element composition of basic lavas from several tectonic environments are compared with the estimated composition of the primordial mantle. The observed variations are used to subdivide mid-ocean ridge basalts (MORB) into two main types according to the tectonic character of the ridge segment from which they were erupted. Ridge segments with positive residual gravity, depth and heat flow anomalies erupt E-type MORB which are predominantly enriched in the more hygromagmatophile elements, but also include magma types which are depleted in most of these elements. Both enriched and depleted E-type MORB can be distinguished from the basalts erupted at normal ridge segments (N-type MORB) by their La/Ta ratios (in E-type MORB La/Ta ~10, in N-type MORB La/Ta is ~15) and by Hf/Ta ratios (in E-type MORB Hf/Ta> 7, in N-type MORB Hf/Ta> 7). E-type MORB can be distinguished from the basalts erupted at ocean islands by their higher Hf/Ta ratios (>2). A Th-Hf-Ta triangular diagram is used to discriminate between the different ocean floor basalts as well as those erupted at destructive plate margins, which are depleted in Ta and Nb. This diagram can also distinguish between silicic lavas from the different tectonic environments as well as identifying lavas that have been contaminated with continental crust.  相似文献   

17.
We report new trace element data for an extensive suite of quench basalt glasses dredged from the southern Mid-Atlantic Ridge (MAR) between 40°S and 52.5°S. Ratios between highly incompatible trace elements are strongly correlated and indicate a systematic distribution of incompatible element enriched mid-ocean ridge basalt (MORB) (E-type: Zr/Nb=5.9-19, Y/Nb=0.9-8.4, (La/Sm)n=1.0-2.9) and incompatible element depleted MORB (N-type: Zr/Nb=30-69, Y/Nb=11-29, (La/Sm)n=0.48-0.79) along this section of the southern MAR. A notable feature of N-type MORB from the region is the higher than usual Ba/Nb (4-9), La/Nb (1.2-2.4) and primitive mantle normalised K/Nb ratios (>1). Ba/Nb ratios in E-type MORB samples from 47.5 to 49°S are especially elevated (>10). The occurrence and geographic distribution of E-type MORB along this section of the southern MAR can be correlated with the ridge-centred Shona and off-axis Discovery mantle plumes. In conjunction with published isotope data for a subset of the same sample suite [Douglass et al., J. Geophys. Res. 104 (1999) 2941], a model is developed whereby prior to the breakup of Gondwana and the opening of the South Atlantic Ocean, the underlying asthenospheric mantle was locally contaminated by fluids/melts rising from the major Mesozoic subduction zone along the south-southwest boundary of Gondwana, leaving a subduction zone geochemical imprint (elevated (K/Nb)n and 87Sr/86Sr ratios, decreased 143Nd/144Nd ratios). Subsequent impingement of three major mantle plume heads (Tristan/Gough, Discovery, Shona) resulted in heating and thermal erosion of the lowermost subcontinental lithosphere and dispersal into the convecting asthenospheric mantle. With the opening of the ocean basin, continued plume upwelling led to plume-ridge interactions and mixing between geochemically enriched mantle derived from the Shona and Discovery mantle plumes, material derived from delamination of the subcontinental lithosphere, and mildly subduction zone contaminated depleted asthenospheric mantle.  相似文献   

18.
Basalts dredged from ridge axes within 70 km of the Indian Ocean triple junction in the western Indian Ocean have many geochemical and petrologic characteristics in common with depleted mid-ocean ridge basalts (MORBs) from the Atlantic and Pacific. For example there is overlap in major and trace element abundances, and in diagnostic ratios such as K/Rb (700–925) and La/Sm (less than chondritic). Also, glass inclusions in calcic plagioclase (An89–90) provide evidence for a primitive high Mg/Fe, low TiO2 melt. In contrast, basalts dredged from 250 to 400 km southwest of the triple junction on the Southwest Indian Ridge are compositionally distinct from depleted MORB. They are nepheline-normative or slightly hypersthene normative and have higher alkali metal and incompatible element abundances than depleted MORBs with similar MgO contents.All of these Indian Ocean basalts have Sr, Nd and Pb isotope ratios which corroborate previous studies showing that relative to depleted Atlantic and Pacific MORB, many Indian Ocean MORBs have low206Pb/204Pb and high87Sr/86Sr. However, individual Indian Ocean ridges have different radiogenic isotope characteristics, and basalts from the vicinity of the triple junction have unusually high87Sr/86Sr (∼ 0.7032) at low206Pb/204Pb ratios (17.3–18.2). Moreover, the shallow axial region of the Central Indian Ridge from ∼ 12°S to the triple junction (26°S) has high87Sr/86Sr (> 0.7030). Apparently, the depleted component of Indian Ocean MORBs has been contaminated by an isotopically unusual component which does not occur in Pacific and Atlantic MORBs, and is not dominant in basalts from many Indian Ocean islands. The degree of this contamination is not uniform in western Indian Ocean MORB; the most contaminated basalts occur from 12°S on the Central Indian Ridge to the triple junction (∼ 26°S) and easterly along the Southeast Indian Ridge to ∼ 72°E.  相似文献   

19.
New oxygen isotope data are presented for submarine lavas erupted close to the transition between the oceanic Kermadec island arc and the continental Taupo Volcanic Zone, New Zealand. Volcanic glasses display δ18O values ranging from +5.65‰ to +5.83‰, clinopyroxenes range from +5.23‰ to +5.78‰ and olivines range from +4.83‰ to +5.47‰. Coexisting glass and phenocrysts in the lavas are in isotopic equilibrium, with one exception. Oxygen isotope ratios of back-arc lavas erupted through oceanic crust are indistinguishable from mid-ocean ridge basalts or lavas erupted in nearby back-arc settings. Although lavas from the arc front display elevated oxygen isotope ratios, the magnitude of 18O-enrichment is too great to result from recycling of subducted material alone. A single back-arc lava erupted through continental crust is also relatively 18O-rich suggesting that the most likely origin for the high δ18O signature is limited amounts of interaction between continental crust and melts derived from a mantle wedge that has been variably fluxed by recycled oxygen. The results of modelling open system behaviour in this volcanic system highlight the need for strong controls on the composition of local contaminants. Application of ‘average' crustal lithologies, as in other volcanic provinces, may lead to erroneous conclusions regarding the involvement of local basement.  相似文献   

20.
A key requirement for any model of mantle evolution is accounting for the high 3He/4He ratios of many ocean island basalts compared to those of mid-ocean ridge basalts. The early, popular paradigm of primitive, undegassed mantle stored in a convectively isolated lower mantle is incompatible with geophysical constraints that imply whole mantle convection. Thus it has been suggested more recently that domains with high 3He/U ratios have been created continuously from the bulk mantle throughout Earth history. Such models require that the 3He/4He ratio of the convecting mantle was at least as high as the highest values seen in OIB at the time the OIB source was generated. These domains must also be created with sufficient He to impart distinctive He isotopic signatures to ocean island basalts. However, the He isotope evolution of the mantle has not been consistently quantified to determine if such scenarios are plausible.

Here a simple model of the He evolution of the whole mantle is examined. Using a wide range of possible histories of continental extraction and He degassing, the bulk convecting mantle was found to have had 3He/4He ratios as high as those seen in the Iceland hotspot only prior to 3 Ga. Such high 3He/4He ratios can only be preserved if located in domains that are not modified by convective mixing or diffusive homogenisation since that time. Further, there are difficulties in producing, with commonly invoked magmatic processes, domains with sufficiently high 3He/U ratios and enough 3He to be able to impart this signature to ocean island basalts. The results are consistent with models that store such He signatures in the core or a deep layer in the mantle, but are hard to reconcile with models that continuously generate high 3He/4He domains within the mantle.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号