首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiple-point simulation (MPS) method has been increasingly used to describe the complex geologic features of petroleum reservoirs. The MPS method is based on multiple-point statistics from training images that represent geologic patterns of the reservoir heterogeneity. The traditional MPS algorithm, however, requires the training images to be stationary in space, although the spatial distribution of geologic patterns/features is usually nonstationary. Building geologically realistic but statistically stationary training images is somehow contradictory for reservoir modelers. In recent research on MPS, the concept of a training image has been widely extended. The MPS approach is no longer restricted by the size or the stationarity of training images; a training image can be a small geometrical element or a full-field reservoir model. In this paper, the different types of training images and their corresponding MPS algorithms are first reviewed. Then focus is placed on a case where a reservoir model exists, but needs to be conditioned to well data. The existing model can be built by process-based, object-based, or any other type of reservoir modeling approach. In general, the geologic patterns in a reservoir model are constrained by depositional environment, seismic data, or other trend maps. Thus, they are nonstationary, in the sense that they are location dependent. A new MPS algorithm is proposed that can use any existing model as training image and condition it to well data. In particular, this algorithm is a practical solution for conditioning geologic-process-based reservoir models to well data.  相似文献   

2.
Multiple-point simulation is a newly developed geostatistical method that aims at combining the strengths of two mainstream geostatistical methods: object-based and pixel-based methods. It maintains the flexibility of pixel-based algorithms in data conditioning, while enhancing its capability of reproducing realistic geological shapes, which is traditionally reserved to object-based algorithms. However, the current snesim program for multiple-point simulation has difficulty in reproducing large-scale structures, which have a significant impact on the flow response. To address this problem, we propose to simulate along a structured path based on an information content measure. This structured path accounts for not only the information from the data, but also some prior structural information provided by geological knowledge. Various case studies show a better reproduction of large-scale structures. This concept of simulating along a structured path guided by information content can be applied to any sequential simulation algorithms, including traditional variogram-based two-point geostatistical algorithms.  相似文献   

3.
多点地质统计学:理论、应用与展望   总被引:29,自引:2,他引:29       下载免费PDF全文
本文系统地介绍了多点地质统计学的基本原理及方法,并以我国渤海湾盆地某区块新近系明化镇组河流相储层为例,进行了多点统计学随机建模的实例分析。多点地质统计学为储层随机建模的国际前沿研究方向,该方法综合了基于象元的方法易忠实条件数据以及基于目标的方法易再现目标几何形态的优点,同时克服了传统基于变差函数的二点统计学不能表达复杂空间结构和再现目标几何形态的不足。通过理论与实例研究,分析了目前多点统计学尚存在的问题(包括训练图像平稳性问题、目标连续性问题以及综合软信息的问题等)及未来发展的方向。  相似文献   

4.
Indicator Simulation Accounting for Multiple-Point Statistics   总被引:7,自引:0,他引:7  
Geostatistical simulation aims at reproducing the variability of the real underlying phenomena. When nonlinear features or large-range connectivity is present, the traditional variogram-based simulation approaches do not provide good reproduction of those features. Connectivity of high and low values is often critical for grades in a mineral deposit. Multiple-point statistics can help to characterize these features. The use of multiple-point statistics in geostatistical simulation was proposed more than 10 years ago, on the basis of the use of training images to extract the statistics. This paper proposes the use of multiple-point statistics extracted from actual data. A method is developed to simulate continuous variables. The indicator kriging probabilities used in sequential indicator simulation are modified by probabilities extracted from multiple-point configurations. The correction is done under the assumption of conditional independence. The practical implementation of the method is illustrated with data from a porphyry copper mine.  相似文献   

5.
The reproduction of the non-stationary distribution and detailed characteristics of geological bodies is the main difficulty of reservoir modeling. Recently developed multiple-point geostatistics can represent a stationary geological body more effectively than traditional methods. When restricted to a stationary hypothesis, multiple-point geostatistical methods cannot simulate a non-stationary geological body effectively, especially when using non-stationary training images (TIs). According to geologic principles, the non-stationary distribution of geological bodies is controlled by a sedimentary model. Therefore, in this paper, we propose auxiliary variables based on the sedimentary model, namely geological vector information (GVI). GVI can characterize the non-stationary distribution of TIs and simulation domains before sequential simulation, and the precision of data event statistics will be enhanced by the sequential simulation’s data event search area limitations under the guidance of GVI. Consequently, the reproduction of non-stationary geological bodies will be improved. The key features of this method are as follows: (1) obtain TIs and geological vector information for simulated areas restricted by sedimentary models; (2) truncate TIs into a number of sub-TIs using a set of cut-off values such that each sub-TI is stationary and the adjacent sub-TIs have a certain similarity; (3) truncate the simulation domain into a number of sub-regions with the same cut-off values used in TI truncation, so that each sub-region corresponds to a number of sub-TIs; (4) use an improved method to scan the TI or TIs and construct a single search tree to restore replicates of data events located in different sub-TIs; and (5) use an improved conditional probability distribution function to perform sequential simulation. A FORTRAN program is implemented based on the SNESIM.  相似文献   

6.
Multi-point statistics (MPS) has emerged as an advanced geomodeling approach. A practical MPS algorithm named snesim (simple normal equations simulation), which uses categorical-variable training images, was proposed in 2001. The snesim algorithm generates a search tree to store the occurrence statistics of all patterns in the training image within a given set of search templates before the simulation proceeds. The snesim search tree concept makes MPS simulation central processing unit efficient but consumes large amounts of memory, particularly when three-dimensional training images contain complex patterns and when a large search template is required to ensure optimal reproduction of the image patterns. To crack the memory-restriction bottleneck, we have developed a compact search tree that contains the same information but reduces memory cost by one order of magnitude. Furthermore, the compact structure also accelerates MPS simulation significantly. Such remarkable improvement makes MPS a more practical tool to use in building the large and complex three-dimensional facies models required in the oil and gas industry.  相似文献   

7.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

8.
多点地质统计学建模是近年来储层建模技术的研究热点,其实用性受到训练图像的限制。训练图像的质量决定了多点地质统计学建模的精度和可靠程度,是多点地质统计学建模成功的关键因素。文章阐述了训练图像的特征和意义,从方法的定义、使用情况、实例等方面系统介绍了训练图像建立的方法,包括手工绘制、基于目标模拟、三维地震信息提取或转化、基于原型模型、基于过程模拟和二维图像方法,综合对比了不同训练图像建立方法的数据来源、优势与不足,探讨了多点地质统计学建模依赖训练图像存在的问题。结合文献调研和多点地质统计学建模实践,指出了训练图像及其建立方法的发展方向,为多点地质统计学建模研究者和使用者提供借鉴,为完善多点地质统计学建模方法提供思考。  相似文献   

9.
多点地质统计学建模的发展趋势   总被引:2,自引:0,他引:2  
从算法研究、训练图像处理和实际应用三个方面详细解剖了国内外多点地质统计学的发展历程,在此基础上,分析了多点地质统计学主流的几种算法的核心原理、适用范围及优缺点,以此来对储层建模的发展趋势作出展望。目前,多点地质统计学虽是随机建模的一种前沿研究热点,但由于其尚未成熟,仍需对建模算法进行研究。为此,在前人研究的基础上,重点分析了多点地质统计学的发展趋势:合理处理训练图像;合理利用软信息;选择合适的相似性方法;选择合适的标准化方法;合理利用平稳性;算法间的耦合;选择合适的过滤器;拓展缝洞型碳酸盐岩模拟。最后,提出多点地质统计学在储层建模方面,应从增加储层的模拟区域、提高模拟精度、扩大储层相的模拟范围和提高计算机模拟效率等方面进行改进。  相似文献   

10.
Traditional simulation methods that are based on some form of kriging are not sensitive to the presence of strings of connectivity of low or high values. They are particularly inappropriate in many earth sciences applications, where the geological structures to be simulated are curvilinear. In such cases, techniques allowing the reproduction of multiple-point statistics are required. The aim of this paper is to point out the advantages of integrating such multiple-statistics in a model in order to allow shape reproduction, as well as heterogeneity structures, of complex geological patterns to emerge. A comparison between a traditional variogram-based simulation algorithm, such as the sequential indicator simulation, and a multiple-point statistics algorithm (e.g., the single normal equation simulation) is presented. In particular, it is shown that the spatial distribution of limestone with meandering channels in Lecce, Italy is better reproduced by using the latter algorithm. The strengths of this study are, first, the use of a training image that is not a fluvial system and, more importantly, the quantitative comparison between the two algorithms. The paper focuses on different metrics that facilitate the comparison of the methods used for limestone spatial distribution simulation: both objective measures of similarity of facies realizations and high-order spatial cumulants based on different third- and fourth-order spatial templates are considered.  相似文献   

11.
Thin, irregularly shaped surfaces such as clay drapes often have a major control on flow and transport in heterogeneous porous media. Clay drapes are often complex, curvilinear three-dimensional surfaces and display a very complex spatial distribution. Variogram-based stochastic approaches are also often not able to describe the spatial distribution of clay drapes since complex, curvilinear, continuous, and interconnected structures cannot be characterized using only two-point statistics. Multiple-point geostatistics aims to overcome the limitations of the variogram. The premise of multiple-point geostatistics is to move beyond two-point correlations between variables and to obtain (cross) correlation moments at three or more locations at a time using training images to characterize the patterns of geological heterogeneity. Multiple-point geostatistics can reproduce thin irregularly shaped surfaces such as clay drapes, but this is often computationally very intensive. This paper describes and applies a methodology to simulate thin, irregularly shaped surfaces with a smaller CPU and RAM demand than the conventional multiple-point statistical methods. The proposed method uses edge properties for indicating the presence of thin irregularly shaped surfaces. Instead of pixel values, edge properties indicating the presence of irregularly shaped surfaces are simulated using snesim. This method allows direct simulation of edge properties instead of pixel properties to make it possible to perform multiple-point geostatistical simulations with a larger cell size and thus a smaller computation time and memory demand. This method is particularly valuable for three-dimensional applications of multiple-point geostatistics.  相似文献   

12.
Conditional Simulation with Patterns   总被引:17,自引:0,他引:17  
An entirely new approach to stochastic simulation is proposed through the direct simulation of patterns. Unlike pixel-based (single grid cells) or object-based stochastic simulation, pattern-based simulation simulates by pasting patterns directly onto the simulation grid. A pattern is a multi-pixel configuration identifying a meaningful entity (a puzzle piece) of the underlying spatial continuity. The methodology relies on the use of a training image from which the pattern set (database) is extracted. The use of training images is not new. The concept of a training image is extensively used in simulating Markov random fields or for sequentially simulating structures using multiple-point statistics. Both these approaches rely on extracting statistics from the training image, then reproducing these statistics in multiple stochastic realizations, at the same time conditioning to any available data. The proposed approach does not rely, explicitly, on either a statistical or probabilistic methodology. Instead, a sequential simulation method is proposed that borrows heavily from the pattern recognition literature and simulates by pasting at each visited location along a random path a pattern that is compatible with the available local data and any previously simulated patterns. This paper discusses the various implementation details to accomplish this idea. Several 2D illustrative as well as realistic and complex 3D examples are presented to showcase the versatility of the proposed algorithm.  相似文献   

13.
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.  相似文献   

14.
利用三维地质模拟技术重构地质现象的三维空间分布,是实现自然资源管理和风险评估的重要基础和前提。多点统计学方法通过探寻多点间的空间结构关系,结合随机模拟方法生成具有差异性的模拟结果,较好地再现了复杂的地质现象。然而,如何构建合适、有效的训练图像一直是基于多点统计学三维地质模拟的核心问题。本文提出了一种改进的多点统计学算法。本方法结合了序贯模拟和迭代的方法,将二维剖面扩展为三维训练图像,再结合EM-Like算法,实现了三维地质结构的优化模拟。建模实例结果表明,本方法能确保训练图像对内部模拟网格的约束,准确模拟研究区的地层层序,并很好地再现二维地质剖面所反映的地层结构关系。  相似文献   

15.
In many earth sciences applications, the geological objects or structures to be reproduced are curvilinear, e.g., sand channels in a clastic reservoir. Their modeling requires multiple-point statistics involving jointly three or more points at a time, much beyond the traditional two-point variogram statistics. Actual data from the field being modeled, particularly if it is subsurface, are rarely enough to allow inference of such multiple-point statistics. The approach proposed in this paper consists of borrowing the required multiple-point statistics from training images depicting the expected patterns of geological heterogeneities. Several training images can be used, reflecting different scales of variability and styles of heterogeneities. The multiple-point statistics inferred from these training image(s) are exported to the geostatistical numerical model where they are anchored to the actual data, both hard and soft, in a sequential simulation mode. The algorithm and code developed are tested for the simulation of a fluvial hydrocarbon reservoir with meandering channels. The methodology proposed appears to be simple (multiple-point statistics are scanned directly from training images), general (any type of random geometry can be considered), and fast enough to handle large 3D simulation grids.  相似文献   

16.
Training Images from Process-Imitating Methods   总被引:2,自引:2,他引:0  
The lack of a suitable training image is one of the main limitations of the application of multiple-point statistics (MPS) for the characterization of heterogeneity in real case studies. Process-imitating facies modeling techniques can potentially provide training images. However, the parameterization of these process-imitating techniques is not straightforward. Moreover, reproducing the resulting heterogeneous patterns with standard MPS can be challenging. Here the statistical properties of the paleoclimatic data set are used to select the best parameter sets for the process-imitating methods. The data set is composed of 278 lithological logs drilled in the lower Namoi catchment, New South Wales, Australia. A good understanding of the hydrogeological connectivity of this aquifer is needed to tackle groundwater management issues. The spatial variability of the facies within the lithological logs and calculated models is measured using fractal dimension, transition probability, and vertical facies proportion. To accommodate the vertical proportions trend of the data set, four different training images are simulated. The grain size is simulated alongside the lithological codes and used as an auxiliary variable in the direct sampling implementation of MPS. In this way, one can obtain conditional MPS simulations that preserve the quality and the realism of the training images simulated with the process-imitating method. The main outcome of this study is the possibility of obtaining MPS simulations that respect the statistical properties observed in the real data set and honor the observed conditioning data, while preserving the complex heterogeneity generated by the process-imitating method. In addition, it is demonstrated that an equilibrium of good fit among all the statistical properties of the data set should be considered when selecting a suitable set of parameters for the process-imitating simulations.  相似文献   

17.
Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling   总被引:6,自引:2,他引:4  
The advent of multiple-point geostatistics (MPS) gave rise to the integration of complex subsurface geological structures and features into the model by the concept of training images. Initial algorithms generate geologically realistic realizations by using these training images to obtain conditional probabilities needed in a stochastic simulation framework. More recent pattern-based geostatistical algorithms attempt to improve the accuracy of the training image pattern reproduction. In these approaches, the training image is used to construct a pattern database. Consequently, sequential simulation will be carried out by selecting a pattern from the database and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the lack of a unifying framework for classifying and modeling the patterns from the training image. In this paper, an entirely different approach will be taken toward geostatistical modeling. A novel, principled and unified technique for pattern analysis and generation that ensures computational efficiency and enables a straightforward incorporation of domain knowledge will be presented.  相似文献   

18.
Multiple-point statistics (MPS) provides a flexible grid-based approach for simulating complex geologic patterns that contain high-order statistical information represented by a conceptual prior geologic model known as a training image (TI). While MPS is quite powerful for describing complex geologic facies connectivity, conditioning the simulation results on flow measurements that have a nonlinear and complex relation with the facies distribution is quite challenging. Here, an adaptive flow-conditioning method is proposed that uses a flow-data feedback mechanism to simulate facies models from a prior TI. The adaptive conditioning is implemented as a stochastic optimization algorithm that involves an initial exploration stage to find the promising regions of the search space, followed by a more focused search of the identified regions in the second stage. To guide the search strategy, a facies probability map that summarizes the common features of the accepted models in previous iterations is constructed to provide conditioning information about facies occurrence in each grid block. The constructed facies probability map is then incorporated as soft data into the single normal equation simulation (snesim) algorithm to generate a new candidate solution for the next iteration. As the optimization iterations progress, the initial facies probability map is gradually updated using the most recently accepted iterate. This conditioning process can be interpreted as a stochastic optimization algorithm with memory where the new models are proposed based on the history of the successful past iterations. The application of this adaptive conditioning approach is extended to the case where multiple training images are proposed as alternative geologic scenarios. The advantages and limitations of the proposed adaptive conditioning scheme are discussed and numerical experiments from fluvial channel formations are used to compare its performance with non-adaptive conditioning techniques.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号