首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

2.
The well-known Pliocene to Quaternary Rio Grande rift of northern New Mexico and southern Colorado is distinctly different from the Miocene rift, especially in structural style. Prior to approximately 21 Ma, there was little extension or rift-basin development. Uppermost Oligocene and Lower Miocene strata were deposited as broad volcaniclastic aprons, with no significant evidence of syn-depositional faulting, in contrast to younger deposits. The only documented areas of extensional faulting and stratal rotation older than 21 Ma occur within or close to magmatic centers. Early rift basins (21-10 Ma) developed as half grabens progressively tilted in hanging walls of normal faults that primarily reactivated Laramide (Eocene) reverse faults: (1) the San Luis basin tilted eastward as the Sangre de Cristo normal fault reactivated westward-dipping Laramide reverse faults; (2) the Tesuque basin tilted westward as normal faults reactivated eastward-dipping Laramide reverse faults of Sierra Nacimiento and related features; and (3) the Belen basin experienced complex tilting as diverse normal faults reactivated variably dipping Laramide reverse faults. Some of these early-rift faults remain active, whereas others became inactive starting near 10 Ma, as new faults broke across Laramide and early-rift features. The Embudo transfer zone linked normal faults along the east side of the San Luis basin to the Pajarito, La Bajada, San Francisco, and Rincon fault zones at this time. Normal faults along the northwest side of the Miocene Tesuque basin became inactive at the same time that rapid uplift of the Sandia Mountains as a footwall block began at about 10 Ma. This shifting of normal-fault activity resulted in reversal of tilt direction from westward for the Miocene Tesuque basin to eastward for the modern Albuquerque basin. Uplift and erosion of early-rift deposits along the northwest side of the Albuquerque basin have resulted.

This two-stage model for evolution of the Rio Grande rift in north-central New Mexico and southern Colorado is fundamentally different from previous two-stage models, which described Oligo-Miocene volcaniclastic aprons as “early rift deposits,” and related them to extensional structures. Rather, development of half grabens began around 21 Ma, with dominance of negative inversion of Laramide reverse and thrust faults. Regional change in extension direction led to the abandonment of some faults and the initiation of new faults at 10-8 Ma in the Rio Grande rift. The biggest change occurred in the Tesuque basin, as the western boundary fault became inactive during growth of the Jemez volcanic field, and the Sandia Mountains began their rapid rise as the northern Albuquerque basin tilted to the east. Continued regional uplift, and integration and incision of the Rio Grande and tributaries, have occurred during the last 5 million years, with the course of the river tending to follow the downdropped side of each modern half graben.  相似文献   

3.
Interlayered and cofolded charnockites and metapelites of thetype charnockite area near Madras were metamorphosed under granulitefades conditions. Fe-Mg partitioning between orthopyroxene,garnet, and biotite indicates that chemical equilibrium wasapproached under similar P-T conditions in the two rock suites.Several geothennometers and geobarometers give P-T values whichconverge at 750–800?C and 6.5–7.5 kb. Computations utilizing data from high pressure phase equilibriumexperiments of Bohlen et al. (1983a) and Wones & Dodge (1977)point to several significant relations regarding the behaviourof H2O during the granulite metamorphism. aH2O values, computedfrom Bohlen et al.'s (1983a) reversal data and the a-X modelfor phlogopite after Bohlen et al. (1980), show distinctly lowermagnitudes in metapelites (0.10–0.16) than in charnockites(0.23–0.34). No systematic spatial gradients exist withinthe charnockites or metapelites, and aH2O has similar valuesin metapelite exposures widely separated in the field. Theseimply an internal, rather than an external (e.g., by CO2 influx),control of the fluids. Applying the algebraic method developed by Rumble (1976), Gibbsanalysis in the system K2O-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2Oshows that the chemical potentials of H2O and to O2, as monitoredagainst biotite composition and , exhibit gradients with respect to XMg in the two rock suites under isothermal-isobaricconditions. µH2O was found to decrease with XMgbt in both,while µO2 increases with decreasing XMgbt in metapelitesbut increases sympathetically with XMgbt in charnockites. Thesefindings point out again that µH2O and µO2 wereinternally buffered. The absence of graphite in the metapelites,at an estimated fO2 = 10–14.7 b, also argues against anexternal influx of CO2 and, inter alia, supports internal buffering.A complementary enquiry into variations of aTIO2 reveals aninverse relation between aTIO2 and aH2O, suggesting a similarcontrol for aTIO2. The inferences from biotite dehydration equilibria, when combinedwith the P-T data and with several field and chemical featuresof these rocks noted earlier (Sen, 1974), make dehydration meltinga distinct possibility for the Madras rocks. It is argued thatthe low aH2O and high aTIO2 ({small tilde} 0.9) observed inthe metapelites have been caused by a greater extent of meltingin the precursors of metapelites, which were more hydrous thanthose of charnockites, coupled with preferential partitioningof Ti into the residual rocks—thus strengthening the casefor dehydration melting.  相似文献   

4.
The second of two periods of regional metamorphism that affectedpelitic rocks near Snow Peak caused complete re-equilibrationof mineral assemblages and resulted in a consistent set of metamorphicisograds. Metamorphic chlorite and biotite occur in the lowestgrade rocks. With increasing grade, garnet, staurolite, andkyanite join the assemblage, resulting in a transition zonecontaining all the above phases. At higher grade, chlorite,and finally staurolite disappear. Mass balance relations at isograds and among minerals of low-varianceassemblages have been modelled by a non-linear least-squaresregression technique. The progressive sequence can be describedin terms of schematic T-XH2O relations among chlorite, biotite,garnet, staurolite, and kyanite at Ptotal above the KFMASH invariantpoint involving those phases. The first appearance of garnetwas the result of an Fe-Mg-Mn continuous reaction. As temperaturerose, the garnet zone assemblage encountered the stauroliteisograd reaction, approximated by the model reaction: 3?0 chlorite + 1?5 garnet + 3?3 muscovite + 05 ilmenite = 1?0staurolite + 3?1 biotite + 1?5 plagioclase + 3?3 quartz + 10?3H2O. The staurolite zone corresponds to buffering along this reactionto the intersection where chlorite, biotite, garnet, staurolite,and kyanite coexist. The transition zone assemblage formed byreaction at this T–X H2O intersection which migrates towardmore H2O-rich fluid composition with progressive reaction. Thenet reaction at the intersection is approximated by the transitionzone reaction: 1?0 chlorite +1?1 muscovite + 0?2 ilmenite = 2?7 kyanite + 1?0biotite + 0?4 albite + 4?2 H2O. Chlorite was commonly the first phase to have been exhaustedand the remaining assemblage was buffered along a staurolite-outreaction, represented by the model reaction: 1?0 staurolite + 3?4 quartz + 0?4 anorthite + 1?4 garnet + 0?1ilmenite + 7?9 kyanite + 2?0 H2O. Consumption of staurolite by this reaction resulted in the highestgrade assemblage, which contains kyanite, garnet, biotite, muscovite,quartz, plagioclase, ilmenite, and graphite.  相似文献   

5.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

6.
The Northern Qilian high-pressure metamorphic belt has experienced multiple deformation-metamorphism, which consists of at least four stages.In 550.8-526 Ma, eclogites were formed. High temperature and pressure caused the escape of a large quantity of gas-liquid fluids from rocks while silicate melt was generated. In the late stage, small amounts of CO2 and H2O infiltrating along fractures were introduced.In the formation of glaucophane schist (447-362 Ma), devolatilization reactions were dominated during the subduction-uplift stage of the paleoplate.In the uplift-exhumation stage (400-380 Ma) the increase of internal space of fractures in the rocks favoured fluid infiltration and concentration. These fluids participated in hydration reactions in the retro-metamorphism. The fluids participating in the mineral reactions have the compositions of CaCl2-NaCl-H2O.In subsequent thrusting (<380 Ma), the metamorphic terrain was uplifted to the shallower crust and ductile-shearing deformation took place, which c  相似文献   

7.
豆浩然  张文兰  王汝成  陈文迪 《地质学报》2018,92(11):2269-2300
牛塘界钨矿床是桂北地区苗儿山—越城岭岩体南部的一个大型钨矿床,与矿化密切相关的花岗岩为已绿泥石化的中细粒白云母花岗岩。对花岗岩进行了岩石地球化学研究,认为该岩体为高分异、高演化铝过饱和富钨花岗岩;对岩体中锆石进行了U- Pb定年分析,获得成岩年龄为410±4.9Ma;对与白钨矿共生的磷灰石进行了原位U- Pb定年,测得成矿年龄为418±37Ma,两组年龄数据表明,牛塘界钨矿床的成矿花岗岩及成矿作用都属加里东期。 本文还对牛塘界钨矿床的矿石进行了系统的研究,首先,根据蚀变类型划分出三种不同类型的矿石:矽卡岩化矿石、绿泥石化矿石及石英脉(块)型矿石;其次,根据三种矿石的特征划分出三个不同的成矿阶段,即三种矿石的形成与不同的成矿阶段相对应:矽卡岩化阶段、石英-硫化物阶段及晚期硅化-碳酸盐化阶段;第三,对各成矿阶段形成的白钨矿进行了原位微量元素分析,根据白钨矿中Mo含量的变化及白钨矿REE配分曲线中Eu的异常,阐释了成矿环境氧逸度的变化;根据白钨矿中微量元素Na和Nb含量的变化,结合白钨矿REE配分曲线特征,揭示了REE置换进入白钨矿的机理及成矿流体性质的演化趋势;第四,根据白钨矿氧同位素的分析结果,得出成矿流体为岩浆水混入部分经地层循环的大气水;第五,对成矿母岩中成矿元素W的分析结果表明,牛塘界钨矿成矿物质来源于成矿母岩。因此牛塘界钨矿床其成矿物质来源于矿区内高度分异演化的花岗岩,属加里东期晚期的产物。  相似文献   

8.
The most recent of two metamorphic events (M2) in the Snow Peakarea caused progressive changes in mineral parageneses in peliticrocks ranging from chlorite-biotite to kyanite grade. Systematicpartitioning of elements between coexisting phases indicatesa close approach to equilibrium during M2. Temperature estimatesfor M2 range from 440 ?C in the chlorite-biotite zone to 565?C in the kyanite zone. Coexistence of kyanite, garnet, ilmenite,and quartz places an upper pressure limit of approximately 60kb, and an upper temperature limit at the kyanite-sillimaniteboundary. Equilibrium of garnet, kyanite, plagioclase, and quartzindicates that total pressure of equilibration of kyanite-bearingassemblages was approximately 6 kb. Pressure estimates basedon equilibrium of garnet, muscovite, biotite, and plagioclaseindicate a pressure gradient between garnet and lower staurolitezone samples, which equilibrated at approximately 3? 5 kb, andupper staurolite to kyanite zone samples, which equilibratedat 5? 5 kb. Equilibrium of paragonite component of muscovitewith plagioclase, kyanite and quartz, distribution of speciesin C-O-H fluids in equilibrium with graphite, and the presenceof zoisite in adjacent calc-silicate rocks indicate that themetamorphic fluid in kyanite-bearing assemblages contained 65-90mole per cent H2O. However, the experimentally calibrated equilibriumof staurolite, quartz, garnet, and kyanite can be reconciledwith estimated temperature only if XH2O in the fluid was verylow ( 33 mole per cent). T-X(Fe-Mg) relations among chlorite, biotite, garnet, staurolite,kyanite, muscovite and quartz are calculated at 6 kb on thebasis of 3 independent Fe-Mg exchange equilibria: garnet-biotite,chlorite-biotite (empirical, this study), garnet-staurolite(empirical, this study), and three independent net transferequilibria. Alternative sets of data for Mg-chlorite and Fe-stauroliteare evaluated by comparing observed and calculated changes inmineral paragenesis and mineral composition with grade. Chloritedata from Helgeson et al., 1978 give T-X(Fe-Mg) relations consistentwith trends observed in these rocks, whereas data derived frombreakdown of clinochlore and clinochlore + dolomite do not.Calculation of T-X(Fe-Mg) relations consistent with observationsrequires lower values of and than those consistent with experiments on the breakdown of staurolite+quartz.  相似文献   

9.
Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine (up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher (45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma. By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone. While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions immediately underlying Questa and other porphyry molybdenum deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Tholeiitic lavas of the Servilleta Basalt exhibit only subtletextural and mineralogical evidence for a hybrid origin, butelemental and isotopic analyses of these basalts are best modeledin terms of mixing Servilleta parent magma with a range of contemporaneousandesite and dacite magmas. Cryptic compositional heterogeneitiesin some flows interpreted as hybrids apparently reflect incompletehomogenization following pre-emptive magma mingling. The generalscarcity of mixing-related textural disequilibrium is ascribedin part to mixing of mineralogically similar end-members. Eradicationof some phenocrysts during post-mixing residence and evolutionin a convecting magma body may be an even more important factor. Eruptions of hybrid magmas may frequently be triggered by magmamixing events (i.e. injection or replenishment), and minglingof compositionally diverse magmas may ensue as a consequenceof tapping a compositionally graded or layered magma chamber.These hybrids are instantly recognizable by the preservationof disequilibrium textures and mineral assemblages, and by discontinuouscompositional heterogeneities. Cryptic hybrids, which have notpreserved this record, will be recognizable as mixed magmasprimarily by geochemical evidence for open system evolution.  相似文献   

11.
Calc-alkaline olivine andesite and two-pyroxene dacite of theTaos Plateau volcanic field evolved in an open magmatic system.mg-numbers of spatially and temporally associated ServilletaBasalt (54–61) and ohvine andesite (49–59) are comparableand preclude fractional crystallization of ferromagnesian mineralsas the major differentiation process. If Servilleta olivinetholeiite is assumed to be the parental magma type, enrichmentsof highly incompatible trace elements (up to 17 ?) oVer concentrationsin the basalts require that andesitic and dacitic magmas containa substantial proportion of assimilated crust. Isotopic compositionsof andesite and dacite, which have slightly higher 87Sr/86Srratios than the basalts but lower 143Nd/144Nd, 206Pb/204Pb,207Pb/204Pb, and 208Pb/204Pb ratios, are consistent with contaminationof parental basalt by old, low Rb/Sr, low U/Pb, and low Th/Pbcontinental crust. Concentrations of highly incompatible traceelements in andesite and dacite lavas are decoupled from majorelement compositions; the highest concentrat ions of these elementsoccur in andesitic, rather than dacitic compositions, and andesitelavas are more variable in trace element contents. Assimilationof heterogeneous crust concurrent with fractional crystallizationof varying mineral assemblages could cause this decoupled behavior.High mg-numbers in andesite and dacite, skeletal olivine phenocrysts,and reversely zoned pyroxene phenocrysts are manifestationsof mafic replenishment and magma mixing in the Taos Plateaumagmatic system. Taos Plateau volcanoes are monolithologic and are distributedin a semi-concentric zoned pattern that is a reflection of thecomplex subvolcanic magmatic system. A central focus of basaltshields developed above the main basaltic conduit system; thesemagmas contain 10–35% admixed andesitic and dacitic magma.Basalt shields are surrounded by a partial ring of olivine andesiteshield volcanoes, where replenishment of basaltic magma providedthe heat necessary for prolonged assimilation of crust, resultingin intermediate-composition lavas. Dacite shields are locatedaround the periphery of the more mafic volcanoes and reflecta decrease in mafic input on the fringes of the magmatic system.  相似文献   

12.
Anasazi farmers in northern New Mexico occasionally applied a pebble mulch to their gardens during the 14th and 15th centuries A. D. to increase crop yield and to buffer against drought. Regional variations in surface geology and soils are compared to the distribution of pebble-mulch gardens near Pueblo San Marcos in the Galisteo Basin, south of Santa Fe. The slope angle and aspect of 96 individual garden plots are also examined to determine the role of microenvironment as a siting consideration within the broader geological-pedological context. It is found that Anasazi pebble-mulch gardens were consistently sited on south-facing, relatively flat slopes of erosional benches, within naturally occurring surface/near surface deposits of gravel. This suggests that the Anasazi intentionally exploited regionally scaled variations in geology and soils in their pursuit of agricultural diversification. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Prograde suites of pelitic rocks were examined with electronmicroprobe and laser ablation inductively coupled plasma massspectrometry to determine the systematics of element partitioningbetween coexisting monazite, xenotime, and garnet. Monazitegrains that grew in equilibrium with xenotime are enriched inY and Dy compared with monazite that grew in xenotime-absentassemblages. Y and heavy rare earth element contents of monazitecoexisting with xenotime increase with rising temperature. Monazite–xenotimeY–Gd and Y–Dy partitioning is systematic withina metamorphic grade, and increases slightly with increasingmetamorphic grade, suggesting that monazite–xenotime pairsapproached partitioning equilibrium. Garnet and monazite inboth xenotime-bearing and xenotime-absent assemblages show astrong ( R2 = 0·94) systematic relationship between inversetemperature and ln(KEq) for the net-transfer equilibrium YAG+ OH-Ap + (25/4)Qtz = (5/4)Grs + (5/4)An + 3YPO4-Mnz + 1/2H2O,suggesting that garnet and monazite crystallized in compositionalequilibrium. The following temperature–KEq relationshipfor the equilibrium above has been derived:   相似文献   

14.
Minerals, fluid inclusions and stable isotopes have been studiedin ultrahigh-pressure (UHP) OH-rich topaz–kyanite quartzitesfrom Hushan (west of Dongai), in southern Sulu (China). Thequartzites underwent a metamorphic evolution characterized bya peak stage (3·5 GPa and 730–820°C) with theanhydrous assemblage coesite + kyanite I, followed by an earlynear-isothermal decompression stage (2·9 GPa and 705–780°C)with growth of kyanite II, muscovite, and OH-rich topaz, andby decompression-cooling stages, represented by paragonite (1·9GPa and 700–780°C) and pyrophyllite (0·3 GPaand 400°C) on kyanite (I and II) and OH-rich topaz, respectively.These rocks may exhibit unusually low 18O and D values acquiredbefore undergoing UHP metamorphism. Five distinct fluid generationsare recognized. Type I: concentrated peak solutions rich inSi, Al, and alkalis, present within multiphase inclusions inkyanite I. Type II: CaCl2-rich brines present during the growthof early retrograde OH-rich topaz. Type III, IV, and V: lateaqueous fluids of variable salinity, and rare CO2 present duringamphibolite- and late greenschist-facies conditions. A numberof conclusions may be drawn from these relationships that havean effect on fluid evolution in deeply subducted continentalrocks. (1) At a pressure of about 3·5 GPa alkali–alumino-silicateaqueous solutions, with compositions intermediate between H2Ofluid and melt (H2O > 25 and 50 wt %) evolved from quartzites,probably generated by dehydration reactions. (2) During earlydecompression stages, at the transition from UHP to high-pressure(2·9 GPa) conditions, brines of external origin withhigher water contents (82 wt % H2O) initiated the growth ofOH-rich topaz and muscovite. (3) The subsequent decompression,at P <2 GPa, was defined by a limited circulation of NaClaqueous fluids, and CO2 infiltration. Overall, fluid inclusionsand stable isotopes highlight a metamorphic fluid–rockinteraction characterized by internally derived intermediateaqueous solutions at UHP, followed by infiltration of Cl-richbrines with higher water activities. KEY WORDS: ultrahigh-pressure metamorphism; OH-rich topaz; fluid inclusions; stable isotopes; supercritical liquids  相似文献   

15.
韩龙 《地质与勘探》2017,53(3):445-455
偃尾山铜银矿床是大兴安岭北段呼中-塔源成矿带内新发现的中小型矿床。矿床围岩蚀变呈面状分布,主要蚀变类型为硅化、碳酸盐化、黄铁矿化、伊利石化、高岭石化和绢云母化。热液成矿期可分为三个阶段:成矿早期石英-黄铁矿阶段(含少量黄铜矿)、主成矿期石英-斑铜矿-黄铜矿-辉铜矿(含铜硫化物)阶段和成矿晚期石英-碳酸盐-萤石阶段(含少量方铅矿和闪锌矿)。该矿床流体包裹体主要为富液相包裹体,也有少量纯气相包裹体,未见含子矿物包裹体。主成矿阶段流体包裹体均一温度为155℃~342℃,峰值集中在160℃~230℃,冰点温度在﹣3.3℃~﹣0.3℃,盐度为0.53%NaC_(leqv)~5.41%Na Cleqv;流体成分以K~+、Na~+、SO_4~(2-)为主,含少量Ca~(2+)和Cl~-,气相成分以H_2O为主,含少量的CO_2;流体δ~(18)O在-11.8‰~-13.72‰之间,δD变化范围在-105‰~-137‰之间。总体上,成矿流体为低温低盐度流体,流体来源主要是大气降水,成矿流体和矿床蚀变-矿化特征显示本矿床可能为高硫型浅成低温热液矿床。流体压力的突然降低可能是成矿物质沉淀的主要机制。偃尾山矿床可能代表了区域上同时代一种新的矿床类型,后续深入研究将有助于认识该区域成矿规律和找矿方向。  相似文献   

16.
拜仁达坝-维拉斯托矿床是大兴安岭南段西坡最大的2个热液脉型银矿床, 对这两个矿床各阶段矿物(如黑钨矿、浅色闪锌矿、石英和萤石)中的流体包裹体进行研究, 并对硫化物进行了硫同位素分析.结果表明, 拜仁达坝矿床的流体从早阶段到晚阶段(Ⅰ→Ⅱ→Ⅲ)均一温度和盐度逐渐降低.维拉斯托矿床热液成矿期第Ⅰ、Ⅱ成矿阶段具有高温高盐度的流体; 第Ⅲ成矿阶段具有不混溶流体, 即中温中盐度的流体(均一温度为208~294 ℃, 盐度含量为4.65%~12.39%)和高温低盐度的流体(均一温度为333~406 ℃, 盐度含量为3.55%~6.88%); 第Ⅳ成矿阶段具有低温较低盐度的流体.两个矿床的流体包裹体气相成分表明成矿流体均为CO2-H2O-NaCl体系.拜仁达坝矿床的均一温度和盐度随着成矿阶段逐渐降低和氢氧同位素证据均表明, 早阶段的流体主要为岩浆水来源, 晚阶段的流体混入了大气降水.维拉斯托矿床氢氧同位素证据和流体中的成分(CH4/C2H6为39.271%~101.438%)均表明其成矿流体主要为岩浆水来源.拜仁达坝-维拉斯托矿床的硫具有深源特征, 拜仁达坝矿床的成矿机制主要与不同来源的成矿流体混合有关; 维拉斯托矿床的成矿机制主要与降温和成矿流体不混溶有关.   相似文献   

17.
18.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

19.
David Correia 《Geoforum》2007,38(5):1040-1051
Recent research on environmental conflict in New Mexico has focused on racial and ethnic conflict between environmentalists and Hispanic loggers as a means to explain the trajectory of environmental struggle and the failure of Hispano/environmentalist coalitions opposing Forest Service management policies. This paper seeks to extend this explanation by considering the constraining role of federal legislation, institutional management and commercial resource exploitation that limited opportunities for Hispano/environmental collaborative challenges to federal resource management arrangements. I analyze the foundations of sustained yield forestry on the Carson National Forest in northern New Mexico though a focus on the legal construction of sustained yield policies and the practices of implementing sustained yield on the Vallecitos Federal Sustained Yield Unit, a special timber production sub-unit of the Carson. The paper illustrates how the deployment of sustained yield forestry in New Mexico produced not only conditions of production favorable to commercial timber operators, but also established a complex and contradictory regulatory environment that effectively constrained collaborative efforts between environmentalists and small-scale loggers in their efforts to construct alternative futures for resource management in the region.  相似文献   

20.
In the southern Korean Peninsula twelve quartzite strata occur in the Gyeonggi massif and Okcheon belt. Their geologic ages range from Precambrian to Upper Paleozoic. All quartzites in the Gyeonggi massif are of Precambrian in age and are characterized by high-grade metaquartzites; they are Seosan, Anyang, Yongmunsan and Uiam quartzites from west to east. Quartzite types occurring in the Okcheon belt are diverse from orthoquartzite to medium-grade metaquartzite. Orthoquartzites are all Paleozoic in age and are distributed mainly in the eastern Okcheon belt (Taebaeksan Basin) (Jangsan, Dongjeom and Jeongseon quartzites) with one in the central Okcheon belt (Mungyeong Quartzite). Low-grade metaquartzite is Hwasan quartzite in the western part and medium-grade metaquartzites are Daehyangsan and Geumsusan quatzites in the central part, and Yongamsan quartzite in the southwestern part of the Okcheon belt. Distribution of quartzite types in the southern Korean Peninsula is not related to the geologic age of quartzites. As a case study, quartzite characteristics were applied to a provenance study of quartzite clasts in the northwestern part of the Cretaceous Gyeongsang Basin. Quartzite clasts in the study area are interpreted to have been mostly derived from source quartzites in the Okcheon belt, which is consistent with the results of previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号