首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the distribution function (DF) of dark matter particles in haloes of mass range  1014–1015 M  . In the numerical part of this work we measure the DF for a sample of relaxed haloes formed in the simulation of a standard Λ cold dark matter (ΛCDM) model. The DF is expressed as a function of energy E and the absolute value of the angular momentum L , a form suitable for comparison with theoretical models. By proper scaling we obtain the results that do not depend on the virial mass of the haloes. We demonstrate that the DF can be separated into energy and angular momentum components and propose a phenomenological model of the DF in the form     . This formulation involves three parameters describing the anisotropy profile in terms of its asymptotic values (β0 and  β  ) and the scale of transition between them ( L 0). The energy part   f E ( E )  is obtained via inversion of the integral for spatial density. We provide a straightforward numerical scheme for this procedure as well as a simple analytical approximation for a typical halo formed in the simulation. The DF model is extensively compared with the simulations: using the model parameters obtained from fitting the anisotropy profile, we recover the DF from the simulation as well as the profiles of the dispersion and kurtosis of radial and tangential velocities. Finally, we show that our DF model reproduces the power-law behaviour of phase-space density   Q =ρ( r )/σ3( r )  .  相似文献   

2.
We investigate the importance of interactions between dark matter substructures for the mass loss they suffer whilst orbiting within a sample of high-resolution galaxy cluster mass cold dark matter (CDM) haloes formed in cosmological N -body simulations. We have defined a quantitative measure that gauges the degree to which interactions are responsible for mass loss from substructures. This measure indicates that interactions are more prominent in younger systems when compared to older more relaxed systems. We show that this is due to the increased number of encounters a satellite experiences and a higher mass fraction in satellites. This is in spite of the uniformity in the distributions of relative distances and velocities of encounters between substructures within the different host systems in our sample.
Using a simple model to relate the net force felt by a single satellite to the mass loss it suffers, we show that interactions with other satellites account for ∼30 per cent of the total mass loss experienced over its lifetime. The relation between the age of the host and the importance of interactions increases the scatter about this mean value from ∼25 per cent for the oldest to ∼45 per cent for the youngest system we have studied. We conclude that satellite interactions play a vital role in the evolution of substructure in dark matter haloes and that a significant fraction of the tidally stripped material can be attributed to these interactions.  相似文献   

3.
We present a new and completely general technique for calculating the fine-grained phase-space structure of dark matter (DM) throughout the Galactic halo. Our goal is to understand this structure on the scales relevant for direct and indirect detection experiments. Our method is based on evaluating the geodesic deviation equation along the trajectories of individual DM particles. It requires no assumptions about the symmetry or stationarity of the halo formation process. In this paper we study general static potentials which exhibit more complex behaviour than the separable potentials studied previously. For ellipsoidal logarithmic potentials with a core, phase mixing is sensitive to the resonance structure, as indicated by the number of independent orbital frequencies. Regions of chaotic mixing can be identified by the very rapid decrease in the real-space density of the associated DM streams. We also study the evolution of stream-density in ellipsoidal NFW haloes with radially varying isopotential shape, showing that if such a model is applied to the Galactic halo, at least 105 streams are expected near the Sun. The most novel aspect of our approach is that general non-static systems can be studied through implementation in a cosmological N -body code. Such an implementation allows a robust and accurate evaluation of the enhancements in annihilation radiation due to fine-scale structure such as caustics. We embed the scheme in the current state-of-the-art code gadget -3 and present tests which demonstrate that N -body discreteness effects can be kept under control in realistic configurations.  相似文献   

4.
5.
We use the recently completed one billion particle Via Lactea II Λ cold dark matter simulation to investigate local properties like density, mean velocity, velocity dispersion, anisotropy, orientation and shape of the velocity dispersion ellipsoid, as well as the structure in velocity space of dark matter haloes. We show that at the same radial distance from the halo centre, these properties can deviate by orders of magnitude from the canonical, spherically averaged values, a variation that can only be partly explained by triaxiality and the presence of subhaloes. The mass density appears smooth in the central relaxed regions but spans four orders of magnitude in the outskirts, both because of the presence of subhaloes as well as of underdense regions and holes in the matter distribution. In the inner regions, the local velocity dispersion ellipsoid is aligned with the shape ellipsoid of the halo. This is not true in the outer parts where the orientation becomes more isotropic. The clumpy structure in local velocity space of the outer halo cannot be well described by a smooth multivariate normal distribution. Via Lactea II also shows the presence of cold streams made visible by their high 6D phase space density. Generally, the structure of dark matter haloes shows a high degree of graininess in phase space that cannot be described by a smooth distribution function.  相似文献   

6.
The evolution of a stellar bar transforms not only the galactic disc, but also the host dark matter halo. We present high-resolution, fully self-consistent N -body simulations that clearly demonstrate that dark matter halo central density cusps flatten as the bar torques the halo. This effect is independent of the bar formation mode and occurs even for rather short bars. The halo and bar evolution is mediated by resonant interactions between orbits in the halo and the bar pattern speed, as predicted by linear Hamiltonian perturbation theory. The bar lengthens and slows as it loses angular momentum, a process that occurs even in rather warm discs. We demonstrate that the bar and halo response can be critically underestimated for experiments that are unable to resolve the relevant resonant dynamics; this occurs when the phase space in the resonant region is undersampled or plagued by noise.  相似文献   

7.
8.
9.
We perform collisionless N -body simulations of 1:1 galaxy mergers, using models which include a galaxy halo, disc and bulge, focusing on the behaviour of the halo component. The galaxy models are constructed without recourse to a Maxwellian approximation. We investigate the effect of varying the galaxies' orientation, their mutual orbit and the initial velocity anisotropy or cusp strength of the haloes upon the remnant halo density profiles and shape, as well as on the kinematics. We observe that the halo density profile (determined as a spherical average, an approximation we find appropriate) is exceptionally robust in mergers, and that the velocity anisotropy of our remnant haloes is nearly independent of the orbits or initial anisotropy of the haloes. The remnants follow the halo anisotropy – local density slope (β–γ) relation suggested by Hansen & Moore in the inner parts of the halo, but β is systematically lower than this relation predicts in the outer parts. Remnant halo axis ratios are strongly dependent on the initial parameters of the haloes and on their orbits. We also find that the remnant haloes are significantly less spherical than those described in studies of simulations which include gas cooling.  相似文献   

10.
11.
12.
We investigate the figure rotation of dark matter haloes identified in Λ cold dark matter (CDM) simulations. We find that when strict criteria are used to select suitable haloes for study, five of the 222 haloes identified in our   z = 0  simulation output undergo coherent figure rotation over a  5 h −1 Gyr  period. We discuss the effects of varying the selection criteria and find that pattern speeds for a much larger fraction of the haloes can be measured when the criteria are relaxed. Pattern speeds measured over a  1 h −1 Gyr  period follow a lognormal distribution, centred at  Ωp= 0.2 h rad Gyr−1  with a maximum value of 0.94 h rad Gyr−1. Over a  5 h −1 Gyr  period, the average pattern speed of a halo is about  0.1 h rad Gyr−1  and the largest pattern speed found is  0.24 h rad Gyr−1  . Less than half of the selected haloes showed alignment between their figure rotation axis and minor axis, the exact fraction being somewhat dependent on how one defines a halo. While the pattern speeds observed are lower than those generally thought capable of causing spiral structure, we note that coherent figure rotation is found over very long periods and argue that further simulations would be required before strong conclusions about spiral structure in all galaxies could be drawn. We find no correlation between halo properties such as total mass and the pattern speed.  相似文献   

13.
We present observations ( B, R, K , Hα and H  i ) of six nearby low surface brightness galaxies (LSBGs). They show an astonishing amount of variety; while some systems appear smooth and featureless, others resolve into loose assemblies of gas clouds. We have derived rotation curves, gas surface density profiles and star formation thresholds for three of the galaxies.
The results have been used to test two ideas describing their star formation: one in which star formation depends solely on the H  i gas surface density, and one that depends on differential rotation. We find that a critical H  i surface density criterion in the range  2.6–12.6 × 1020 cm−2 (2.1–10.1 M pc−2)  best describes the star-forming ability of these galaxies on local and global scales. A critical gas surface density based on the rotation of the gas is also able to describe the results on a global scale for two of the three galaxies for which we were able to derive rotation curves.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号