首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑沟源于东天山最大现代冰川作用中心博格达峰的南坡. 在第四纪冰期与间冰期旋回中,该流域的冰川均发生过多次规模较大的进退,在谷中留下了较为完整的冰川沉积序列. 这些冰川地形包含有重要的古气候变化信息,对其研究可重建黑沟流域的冰川演化史. 应用OSL对该流域的冰川沉积物进行定年,测定结果表明冰水沉积物(沙质透镜体)比冰碛物更适宜应用单片再生剂量(SAR)测年技术进行测定. 基于测得的年龄并结合地貌地层学原理可初步得出:晚第四纪期间,黑沟流域共发生了5次规模较大的冰川作用,分别为全新世期间的小冰期(16世纪以来冷期的冰进)与新冰期(距今3~4 ka的冰进),末次冰期晚冰阶(MIS 2)与早冰阶(MIS 4)以及倒数第二次冰期(MIS 6).  相似文献   

2.
Holocene and Late Quaternary talus, lobate rock glaciers, and moraines within Audubon Cirque, Colorado Front Range, were assigned reltive ages using the following age-dependent criteria: fresh-weathered ratio, pitting, weathering rind development, angularity, and surface, oxidation of boulders, together with lichen cover and largest lichen diameter. Principal Component scores, yielding four major groups of deposits (relative age units C, R, E and V, from youngest to oldest). Tentative correlation with other Colorado Late Quaternary sequences suggests that unit C is of Gannett Peak age (100–300 years B. P.), unit R of Audubon age (950–1850 years B. P.) unit E of Early Neoglacial age (3000–5000 years B. P.), and unit V of Late Pinedale age (about 10,000 Years B. P.). Correlation is problematic due to differences in operationsl definitions of relative dating parametrs between workers, and because climatic and lithologic variations between areas may confound the date.  相似文献   

3.
Chronology of cirque glaciation,Colorado front range   总被引:2,自引:0,他引:2  
Moraines and rock glaciers in Front Range cirques record at least four, and possibly five, intervals of Holocene glacier expansion. The earliest and most extensive was the Satanta Peak advance, which deposited multiple terminal moraines near present timberline shortly before 9915 ± 165 BP. By 9200 ± 135 BP, timberline had risen to at least its modern elevation; by 8460 ± 140 BP, patterned ground on Satanta Peak moraines had become inactive. Although a minor ice advance may have occurred just prior to 7900 ± 130 BP, there is no evidence that glaciers or perennial snowbanks survived in the Front Range during the “Altithermal” maximum (ca. 6000–7500 BP), or during a subsequent interval of alpine soil formation (ca. 5000–6000 BP).Glaciers were larger during the Triple Lakes advance (3000–5000 BP) than at any other time during Neoglaciation. Minimum ages of 4485 ± 100 BP, 3865 ± 100 BP, and ca. 3150 BP apply to a threefold sequence of Triple Lakes deposits in Arapaho Cirque. After an important interval of soil formation and cavernous weathering, glaciers and rock glaciers of the Audubon advance (950–1850 BP) reoccupied many cirques, and perennial snowbanks blanketed much of the area above present timberline; although the general Audubon snow cover had begun to melt from valley floors by 1505 ± 95 BP, expanded snowbanks lingered on tundra ridge crests until 1050–1150 BP, and glaciers persisted is sheltered cirques until at least 955 ± 95 BP. Following a minor interval of ice retreat, glaciers of the Arapaho Peak advance (100–300 BP) deposited multiple moraines in favorably oriented cirques.Interpretation of Holocene glacial deposits in the Southern and Central Rocky Mountains has been hampered by (1) a heavy reliance upon relative-dating criteria, many of which are influenced by factors other than age; (2) the assumption that glacial advances in high-altitude cirques can be correlated directly with alluvial deposition in far-distant lowlands; and (3) the assumption that glacial advances have necessarily been synchronous throughout the Rocky Mountain region and the world. Although Holocene glacier fluctuations in the Front Range are believed to reflect changes in regional climate, the Front Range chronology does not have particularly close analogs in other parts of North America. Better-dated local sequences are needed before the hypothesis of global synchroneity can be adequately evaluated; until synchroneity has been proven, long-distance correlations and worldwide cycles of recurring glaciation will remain unconvincing.  相似文献   

4.
We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.  相似文献   

5.
The upper Enchantment Lakes basin in the North Cascade Range of Washington displays two moraine belts, each recording an episode of glacier advance after the end of the last glaciation. The inner belt, the Brynhild, 0.1 to 0.5 km beyond existing glaciers, postdates Mount St. Helens Wn tephra (~450 yr old), which lies only beyond the moraines. The morainal surface is only slightly weathered, is almost barren of lichens, and is devoid of soil, evidence suggesting that the Brynhild moraines are no more than a century old. The outer moraine, the Brisingamen, 0.3 to 0.7 km beyond existing glaciers, is weathered and is covered with large lichens. On and behind the Brisingamen moraine the Mazama ash (6900 yr old) is present beneath the Mount St. Helens Yn and Wn tephras. Despite more than 7 millennia of weathering, the rock surface behind the Brisingamen moraine is measurably less weathered than the surface beyond, which was last glaciated during the Rat Creek advance about 13,000 yr ago. The age of the Brisingamen moraine therefore is probably early Holocene. The Brisingamen moraine evidently correlates with moraines near Glacier Peak, near Mount Rainier, in northeastern and central Oregon, in the southern Canadian Rockies, and in the northern U.S. Rocky Mountains. These regional effects suggest that a climatic episode of cooling or increased snowfall affected the entire region some time during the early Holocene.  相似文献   

6.
The major sources of cassiterite in Nigeria are the alluvial and eluvial deposits from the biotite granites within the Jurassic alkaline ring complex (the Younger Granites) of the Jos Plateau. Less than 5% of the total production has been recovered from pegmatites within the largely Precambrian basement complex consisting of migmatites, gneisses, the Pan-African (Older) Granites and pegmatites, but with the rapidly depleting reserves of the former source new reserves have to be found.This study presents the first report on an important new source of cassiterite in basement-complex gneisses, migmatites, pegmatites and aplites in the Gurum area near Jos. The cassiterite, which has been economically concentrated by the leaching and weathering of these rocks, is generally finer grained and darker than the alluvial cassiterite derived from the Jurassic biotite granites. This new find has important petrogenetic and economic implications, suggesting that the basement complex could be a suitable parent rock for the Younger Granites and a significant potential source of cassiterite in Nigeria.  相似文献   

7.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

8.
The lithofacies of the uppermost Pleistocene ( ca 11 800 to 10 400 14C yr  bp ), cold-temperate, coarse-grained beach deposits of Lake Algonquin, the precursor of the present Lake Huron of North America, have been studied and interpreted based on analogous features of modern beaches from the same region. Ice foot and ice-cementation develop during winter but, unlike Arctic beaches, ice-related sedimentary features are seldom, if ever, preserved in the Pleistocene and recent deposits of the Great Lakes. Instead, the deposits retain the typical characteristics of wave-dominated, pure gravel and mixed sand and gravel beaches, there including the classical subdivision of infill zone, swash zone/sand run, imbricated zone, coarse flat-clast zone and coastal dunes. These zones form a regular succession on the surface of many modern beaches; however, they seldom occur as quasi-complete vertical successions in older deposits. In the studied uppermost Pleistocene deposits, the various components are separated vertically by erosional contacts (bounding surfaces) readily recognizable on working faces of large sand and gravel pits and mappable in the subsurface by ground-penetrating radar. The lithofacies are sufficiently diagnostic to allow recognition of depositional settings, and the lithofacies architecture allows the deciphering of important geological events, such as: (i) local input of fluvial material onto the shoreface, where it was partially reworked by waves and moved onto the beachface; (ii) occurrence of major storm events; and (iii) repeated rapid transgressions and regressions typical of the glacial-lake precursors of the modern Great Lakes.  相似文献   

9.
This paper considers the controversial issue of the existence of pre-'Little Ice Age' Neoglacial moraines in southern Norway. Schmidt hammer rebound values are combined with measures of boulder roundness and weathering rind thickness in an attempt to isolate moraines that include weathered boulders. A critical approach is used in distinguishing sites where boulders have weathered in situ from those where previously weathered clasts have been incorporated into relatively young moraines. The results confirm that possible pre-'Little Ice Age' Neoglacial moraines seem to be restricted to small, high-altitude glaciers in eastern Jotunheimen. It is concluded that at these glaciers a particularly large response to a short-lived earlier Holocene climatic event is more likely to explain the survival of such moraines than a particularly subdued response to the climatic deterioration of the 'Little Ice Age'. More refined dating techniques are required to determine the age of formation of the anomalous moraines, but before the palaeoclimatic significance of such dates can be assessed, a critical test is required to establish whether the moraines mark former ice-front positions, and therefore reflect lowering of equilibrium line altitudes, or whether they have been displaced forwards by later and more extensive glacier advances.  相似文献   

10.
札达盆地及周缘高山区的第四纪冰川遗迹分布广泛,类型齐全、发育连续.特征的冰碛及冰水堆积地貌有:冰水堆积平原或冰水堆积平台、冰碛丘陵等.挤压构造遗迹有:褶皱、断裂表皮构造、压坑、压裂构造、变形砾石等.ESR年代测定结果表明,冰碛形成的最大年龄为2.33Ma.依据冰碛、冰水堆积的特征、分布和形成年代等,区域冰川发育由老到新可划分出:7次冰期、6次间冰期、1次冰缘期、1次新冰期.该区是目前所知青藏高原第四纪冰川遗迹发现最多、保存最全和发育最连续的地区,为青藏高原地区的第四纪冰川演化研究、冰期的划分和对比、古气候古环境的研究,提供了重要的实际资料和依据.   相似文献   

11.
Late Pleistocene glacial features in the Páramo de La Culata region, north-central Venezuelan Andes, include: 1. depositional features: morainic till and fluvio-glacial deposits (terrace gravels); 2. sculptured features: glaciated valleys, cirques, horns, and arêtes; and 3. erosional features: striation and grooving, polished rock, roches moutonnées and whaleback forms, and erratic boulders. Two main levels of moraines were found, an older one at 2600 m elevation, and a younger one between 3000 and 3500 m. The difference in age is reflected by the higher degree of weathering, erosion, and vegetation cover of the lower level, as compared with the higher level. Radiocarbon dating, and a comparison and correlation of these glacial features with those of adjacent regions, indicates that the lower morainic level (2600 m) is probably the result of the main glacial advance of the Late Wisconsin Glaciation. The main morainic level (3000 to 3500 m) was probably formed by the latest Wisconsin glacial advance. The Late Pleistocene snow-line depression reached approximately 1200 m below the present snow-line (i. e., down to approximately 3500 m).  相似文献   

12.
ABSTRACT Pebble fabric data are available from several facies of glacigenic sediments deposited by modern glaciers, where sedimentary processes can be observed or inferred with relatively little ambiguity. Over 100 samples from contemporary environments illustrate fabrics characterizing melt-out till, deformed and undeformed lodgement till, sediment flow deposits and ice slope colluvium. Lodgement till fabric variability is related to the two-layer structure of these sediments; a structureless, friable upper layer with low shear strength and high consolidation coefficient, overlying a very compact material of horizontal platy structure. Fabric strength (assessed by eigenvalue analysis) is weaker and pebble dip is more dispersed in the upper structureless horizon. Stronger fabrics in the lower platy horizon may be primary depositional fabrics which are destroyed by subglacial shearing to give weaker fabrics in the upper horizon. Alternatively, upper horizon fabrics may be characteristic of all recently-deposited lodgement tills, with stronger fabrics developing at depth by dewatering and consolidation. There is a general reduction in fabric strength and an increase in particle dip associated with the transition from melt-out tills, through undeformed and deformed lodgement tills, to sediment flow deposits and ice slope colluvium. There is, however, considerable overlap in the fabric strengths characteristic of sediment flow deposits and deformed lodgement tills. Fabric data from modern glacial sedimentary facies are used to assist in interpreting the mode of deposition of some Quaternary glacial sediments. Relatively strong fabrics characteristic of melt-out tills and undeformed lodgement tills are more likely to be diagnostic of genesis than weaker fabrics associated with deformed sediments.  相似文献   

13.
We present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.  相似文献   

14.
15.
Two compound palaeosol profiles formed in loess and till were studied in the oldest early Quaternary end moraine (Gorges age) system on Mount Kenya. Although both tills appear to have similar weathering histories, the overlying loessic sediments, serving as secondary parent materials for the palaeosols, are considered to have different ages on the basis of colour, presence or absence of clay films, and field texture (especially percentage of silt). Palaeomagnetic determinations showed both tills to have reversed remanent magnetism, suggesting that they were emplaced during the Matuyama Chron. The overlying loessic sediments in profiles GOR55 and GOR58 show normal magnetism and grade upward into the lower zone of bioturbation in the A horizon complex. However, in GOR58 the surface loessic sediments have normal remanent magnetism with considerable secular variations, suggesting it was emplaced over a longer time frame during the Brunhes Chron (i.e. < 0.78 Ma). Profile GOR55 contains larger amounts of gibbsite, indicating more aggressive leaching over time, and an absence of secular magnetic variations suggests deposition over a shorter time interval. The study of volcanic feldspars and ash, using scanning electron microscopy, in the two profiles, shows that sand grain (63–250 μm) weathering is slightly different in the two tills; relative weathering effects (e.g. corrosion of grain surfaces and neoformation of clay minerals) are greater in profile GOR55 than in profile GOR58. Overall the data indicate that some sites in the lower tropical Afroalpine timberline environment may have aeolian covers that are considerably younger than the deposits they overlie. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.  相似文献   

17.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

18.
Three kinds of end moraines, depending most probably on climatic conditions affecting depositional environments, are characterized: (1) fluvioglacial end moraines - built of gravels and sands froming fans superimposed on one another, and accumulated by abundant melt water during intense melting of an ice front in a comparatively warm environment; (2) 'Glacial' end moraines - built of flow tills accumulated during slow melting in a comparatively cold environment; and (3) fluvioglacial-and-glacial end moraines, the most widespread ones in Polish lowlands – built of fluvioglacial stratified gravels and sands and of glacial 'flow' deposits; zones of considerable prevalence of glacial deposits over fluvioglacial ones may probably point to comparatively cold stages during deposition, and vice versa. The question of deposition of end moraines in distal and proximal direction, and their geological and geomorphological features is also briefly discussed.  相似文献   

19.
Characteristics of ribbed moraines, the dominating moraine type in southern Finnish Lapland, have been studied in detail. The ridges are composed of several till units, of which the bottommost units consist of mature basal tills and the surficial parts are enriched with local, short‐transport rock fragments and boulders in till and at the surface of ridges. As a result of this re‐examination a two‐step model of the formation process of ribbed moraines is presented. In the first stage, while cold‐based conditions prevailed, both the bottommost part of the ice sheet and the frozen, substrate fractured under compressive ice flow. Following glacial transport of fractured blocks and formation of the transverse ridge morphology, erosion between the ridges continued owing to freeze–thaw process under variable pressure conditions. In the areas with a low pre‐existing till sheet, the process caused quarrying of the bedrock surface and subsequent deposition of rock fragments and boulders under high pressure on the next ridge. The most suitable conditions for ribbed moraine formation existed during Late Weichselian deglaciation, after the Younger Dryas when the climate warmed very quickly, leading to an imbalance between a warm glacier surface and a cold base. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号