首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The partitioning of Fe and Mg between coexisting garnet and olivine has been studied at 30 kb pressure and temperatures of 900 ° to 1,400 °C. The results of both synthesis and reversal experiments demonstrate that K D (= (Fe/Mg)gt/(Fe/Mg)OI) is strongly dependent on Fe/Mg ratio and on the calcium content of the garnet. For example, at 1,000 °C/30 kb, K D varies from about 1.2 in very iron-rich compositions to 1.9 at the magnesium end of the series. Increasing the mole fraction of calcium in the garnet from 0 to 0.3 at 1,000 ° C increases K D in magnesian compositions from 1.9 to about 2.5.The observed temperature and composition dependence of K D has been formulated into an equation suitable for geothermometry by considering the solid solution properties of the olivine and garnet phases. It was found that, within experimental error, the simplest kind of nonideal solution model (Regular Solution) fits the experimental data adequately. The use of more complex models did not markedly improve the fit to the data, so the model with the least number of variables was adopted.Multiple linear regression of the experimental data (72 points) yielded, for the exchange reaction: 3Fe2SiO4+2Mg3Al2Si3O12 olivine garnet 2Fe2Al2Si3O12+3Mg2SiO4 garnet olivine H ° (30kb) of –10,750 cal and S ° of –4.26 cal deg–1 mol–1. Absolute magnitudes of interaction parameters (W ij ) derived from the regression are subject to considerable uncertainty. The partition coefficient is, however, strongly dependent on the following differences between solution parameters and these differences are fairly well constrained: W FeMg ol -W FeMg gt 800 cal W CaMg gt -W CaFe gt 2,670 cal.The geothermometer is most sensitive in the temperature and composition regions where K D is substantially greater than 1. Thus, for example, peridotitic compositions at temperatures less than about 1,300 ° C should yield calculated temperatures within 60 °C of the true value. Iron rich compositions (at any temperature) and magnesian compositions at temperatures well above 1,300 °C could not be expected to yield accurate calculated temperatures.For a fixed K D the influence of pressure is to raise the calculated temperature by between 3 and 6 °C per kbar.  相似文献   

2.
Gneisses in the Guri area of the Venezuelan Guayana Shield contain mineral assemblages with cordierite, garnet, sillimanite, hypersthene, biotite and Fe-Ti oxide intergrowths.Analysis of mineral assemblages and compositional relationships in the light of experimental data indicate metamorphic conditions of 725–800° C, 5–6 kb P T , <P T for the highest grade rocks and 650–700° C, 5–7 kb P T , approximating P T for the lowest grade rocks. Oxygen fugacities in different lithologies ranged between those of the MH and QFM buffers.The distribution coefficient K D (Mg-Fe) (gar-bio), decreases by 0.006 per atom percent increase in (Mn/Mn+Mg+Fe)gar, falls in the range of K D typical of the sillimanite-K feldspar zone and granulite facies, and is systematically lower in lower grade rocks-all in accord with observation in other localities. K D (Mg-Fe) (cord-bio) ranges from 3.0 in the highest grade rocks to 10.0 in the lowest grade rocks, appears independent of FeO/MgO of cordierite or biotite, and varies systematically with grade. In contrast with conclusions based on observation in other localities, data from the Guri area suggest -KD(cord-bio) may be a sensitive index of grade.A number of mineralogic and geologic observations are difficultly reconciled with existing experimental data.  相似文献   

3.
Stability relations of Fe-Mg cordierite with K feldspar have been determined for conditions of muscovite-quartz instability, applicable to highgrade metamorphism of pelitic rocks. Fe cordierite, K feldspar, and water break down to Fe biotite, sillimanite, and quartz at pressures above a line through 640 ° C, 2kbar and 710 ° C, 2.7 kbar. A P-X diagram for the Fe-Mg analogue of this reaction at 675 ° C is consistent with a naturally occuring cordierite-biotite K D value of 0.53 if Al content of biotite and cordierite water of hydration are taken into account.At higher temperatures Fe cordierite breaks down alone to almandine, sillimanite, quartz and water at pressures above a line through 650 ° C, 3.41 kbar and 760 ° C, 2.9 kbar. For the Fe-Mg reaction, P-X data up to 4 kbar may be extrapolated with use of natural K D values increasing toward one with increasing temperatures.Lines of constant cordierite composition for the two reactions intersect in an Fe-Mg univariant reaction of sillimanite-biotite-quartz to cordieritealmandine-K feldspar-water which is metastable relative to melt at = P tot Reduced water pressure and impurities in the garnet and K feldspar greatly reduce the temperature of this reaction so that it becomes a reasonable reaction for upper amphibolite and granulite facies conditions.The results demonstrate that (1) cordierite may be used as a geobarometer if temperature and approximate can be estimated, (2) almandine low in Mn and Ca does not participate in cordierite reactions where muscovite is present, and (3) the reaction which forms cordierite, almandine, and K feldspar is a possible melt-forming reaction which, under reduced , occurs about 50 ° C above the muscovite melting reaction.  相似文献   

4.
Thermometry of regionally metamorphosed granulites of the Adirondack Highlands has been undertaken using feldspar and iron-titanium-oxide equilibria. Electron microprobe analyses of 20 coexisting oligoclase (An18–30) and microcline perthite (Or57–87) pairs from charnockites and granitic gneisses give KD[Na/(Na+Ca+K]plag/[Na/(Na+Ca+K)]or = 2–3 yielding temperatures of 650 ° to 750 ° C in comparison to Seck's (1971) experimental and Stormer's (1975) calculated temperatures for inferred pressures of 8 kilobars. Microprobe analyses of 10 coexisting titaniferous magnetite (ulvöspinelss 16–45) and ilmenite (hematitess 4.7–6.5) pairs from the Marcy massif anorthosite and related gabbros give temperatures of 620 ° to 800 ° C in comparison to Buddington and Lindsley's (1964) experimental data. Oxygen fugacities buffered by this assemblage range between 10–20 and 10–16 and always lie within 10+1 of the f buffered by fayalite-magnetite-quartz. Exsolved albite in alkali feldspar and ilmenite (oxidized ulvöspinel lamellae) must be reintegrated to infer metamorphic temperatures. Both thermometers give internally consistent, reproducible and geologically reasonable results. The inferred 750 ° and 700 ° C isotherms wrap around the anorthosite massif in roughly concentric circles. Maximum metamorphic temperatures (790 ± 50 ° C) occur between Saranac Lake and Tupper Lake, New York.Contribution No. 336 from the Mineralogical Laboratory, Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan, 48109. U.S.A.  相似文献   

5.
Phase relations of a phonolite (K1) and a tephri-phonolite (K2) from the Upper Miocene lavas in the Southeast Province of the Kerguelen Archipelago have been investigated in the P/T range 100–500 MPa and 700–900 °C at two fO2 conditions (~ NNO and ~ NNO+2.3) to clarify the differentiation and pre-eruptive conditions of these magmas. Crystallization experiments were performed in cold seal pressure vessels (CSPV) and internally heated pressure vessels (IHPV) at various XH2O, under reducing (log fO2 ~ NNO) and oxidizing conditions (log fO2 ~ NNO+2.3). Under reducing conditions, the resulting phase assemblage for K1 was: titanomagnetite, nepheline, alkali feldspar, clinopyroxene and biotite; under oxidizing conditions, the assemblage was: magnetite, plagioclase, alkali feldspar, nepheline, titanite (minerals given in the order of appearance with decreasing T at 200 MPa for 4 wt% water in the melt). It is emphasized that an effect of fO2 on the phase stability of feldspars and feldspathoides was observed. Comparison of the natural and experimental phase assemblages shows that the pre-eruptive conditions for K1 must have been in the log fO2 range NNO+1–NNO+2, at pressures above 200–250 MPa. Assuming a temperature of 800 °C, the water content of the melt is constrained to be between 4 and 6 wt% H2O. The pre-eruptive fO2 conditions for the less evolved sample K2 are more oxidizing with log fO2 close to NNO+2.3. The experimental results show that the enrichment of alkalis in residual melts during differentiation of tephri-phonolites is enhanced at high fO2.Editorial responsibility: J. Hoefs  相似文献   

6.
The assemblage paragonite + quartz is encountered frequently in low- to medium-grade metamorphic rocks. With rising grade of metamorphism they react mutually to yield the condensed assemblage albite + Al2SiO5.The univariant curve pertaining to the equilibrium paragonite + quartz=albite + andalusite + H2O has been located experimentally. The reversed P H 2 O-T data are: 1 kb: 470–490° C 2 kb: 510–530° C 3 kb: 540–560° C 4 kb: 560–580° C 5 kb: 590–600° C The univariant curve pertaining to the equilibrium paragonite + quartz=albite + kyanite + H2O runs through the following P H 2 O-T-intervals: 5 kb: 570–625° C 6 kb: 600–630° C 7 kb: 620–640° C Thermodynamic calculations of S 298 0 , H f,298 0 and G f,298 0 of the phase paragonite from the experimental data presented above and those obtained from the equilibria of the reaction paragonite=albite + corundum + H2O (Chatterjee, 1970), agree within the limits of uncertainty. This prompts the idea that Zen's (1969) suggestion of a possible error of approximately 7 kcal in G f,298 0 of the Al2SiO5 polymorphs may in fact be due to an error of similar magnitude in G f,298 0 of corundum.A best estimate of S 298 0 , H f,298 0 and G f,298 0 of paragonite based on these considerations yield: S 298 0 : 67.61±3.9 cal deg–1 gfw–1 H f,298 0 : –1411.4±2.7 kcal gfw–1 G f,298 0 : –1320.9±4.0 kcal gfw–1 These numbers will be subject to change when better thermochemical data on corundum and albite are available.In medium-grade metamorphic rocks the assemblage paragonite + quartz is commonly found in stable coexistence with such other phases as muscovite, staurolite, andalusite, kyanite, but not with cordierite or sillimanite. However, the assemblage paragonite-sillimanite has been reported to be stable in the absence of quartz. All these petrologic observations can be explained on the basis of the stability data of the phases and phase assemblages concerned.  相似文献   

7.
The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 298 0 ) as well as the enthalpy ( H f,298 0 ) and Gibbs free energy ( G f,298 0 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 298 0 67.8±3.9 cal deg–1 gfw–1 63.7±3.9 cal deg–1 gfw–1 H f,298 0 –1417.9±2.7 kcal gfw–1 –1420.2±2.6 kcal gfw–1 G f,298 0 –1327.4±4.0 kcal gfw–1 –1328.5±4.0 kcal gfw–1.Adapted from a part of the author's Habilitationsschrift accepted by the Ruhr University, Bochum (Chatterjee, 1968).  相似文献   

8.
Seck's (1971a) compositional data on coexisting feldspars in the Or-Ab-An ternary at 650° C and 1 kb were used to calculate the activity-composition relations in binary alkali feldspar and binary plagioclase. The energy constants in Guggenheim's expression for excess free energy of mixing are A 0=3920 and A 1=657 cal/mole for alkali feldspar, in excellent agreement with values obtained by Thompson and Waldbaum (1969), and 1320 and 373 cal/ mole for plagioclase. Using Orville's (1972) data from ion-exchange experiments between plagioclase and Na—Ca chloride solutions at 700° C and 2 kb, we obtained 967 cal/mole for A 0 and 715 cal/mole for A 1 in the plagioclase crystalline solution.Activity-composition relations for plagioclase are interpreted in terms of a continuous, random substitution of CaAl for NaSi across the high structural state plagioclase series. This interpretation is consistent with that obtained from a consideration of lattice parameters.  相似文献   

9.
Time studies were performed in the quinary system Qz-Or-Ab-An-H2O at kbars and T=665 ° and 660 ° C. Starting material was a mixture of quartz, alkali feldspar Or80 and plagioclase An31. The compositions of plagioclases of run products were determined and compared with the plagioclase of stable solidus conditions.The solidus of the granite system was fixed at P HäO=5 kbars using various plagioclase — and appropriate alkali feldspar — compositions besides quartz in the starting mixture (Fig. 1).The results of time studies (Table 3 and Fig. 3) reveal metastable melting in the granite system Qz-Or-Ab-An-H2O. Plagioclase melts almost stoichiometrically. The new plagioclase compositions formed during melting of cotectic compositions approach the theoretically expected stable plagioclase compositions only extremely slowly. An extrapolation of the data achieved in run times of 5–1,500 h indicates attainment of equilibrium after 1014 years. Metastable melting of granitic compositions is not only considered as an experimental problem but also as a rock forming process in nature.  相似文献   

10.
Orthorhombic amphiboles with excess OH, which can be schematically deduced from anthophyllite by the combined substitutions Mg2+ + O2–Li++OH and Mg2+2 Li+, were synthesized at 750–875° C/1 kbar in the system Li2O-MgO-SiO2-H2O. Their phase relations are presented for 800° C/1 kbar . An amphibole with the analytical composition 2.70 wt% Li2O, 31.1 wt% MgO, 63.0 wt% SiO2, and 3.29 wt% H2O has lattice constants a 0 18.588 (11), b 0 17.966 (10), c 0 5.262 (3) Å, V 0 1,757.2 (1.5) Å3 (referred to Space Group Pnma). The OH-valence vibrational spectrum of this amphibole showed v OH bands at 3,667, 3,708, and 3,725 (shoulder) cm–1, which are ascribed to OH in the configurations (MgMgMg)-OH, (MgMgMg)-OH-Li (Li in the A-site) of the pseudotrigonal (M1M1M3)-OH arrangement in the amphibole structure, and to Si-OH, respectively. No explanation can at present be offered for an additional shoulder at 3,695 cm–1. The proposed structural formula is (Li0.27 0.73)(Li1.11 Mg0.89)· (Mg5)(Si8.01O21.20(OH)0.80)(OH)2.00.  相似文献   

11.
The nature of the near-liquidus phases for a mantle-derived olivine melilitite composition have been determined at high pressure under dry conditions and with various water contents. Olivine and clinopyroxene occur on or near the liquidus and there are no conditions where orthopyroxene crystallizes in equilibrium with the olivine melilitite. We have determined the effect on the liquidus temperature and liquidus phases of substituting CO2 for H2O on a mole for mole basis at 30 kb, using olivine melilitite + 20 wt% H2O at = 0 and = (CO2)/(H2+CO2) (mole fraction) = 0.25, 0.5, 0.75 and 1.0 (i.e. olivine melilitite + 38 wt% CO2). Experiments were buffered by the MH or NNO buffers. At 30 kb, CO2 is only slightly less soluble than water for <0.5 as judged by the slight increase in liquidus temperature on mole-for-mole substitution of CO2 for H2O and at 30 kb, 1200° C, = = 0.5 the olivine melilitite contains 8.8 wt% H2O and 21 wt% CO2 in solution. For 1 the CO2 saturated liquidus is depressed 70 ° C below the anhydrous liquidus and the magma dissolves approx. 17% CO2 at 30kb, 1400 ° C, 1, 0. Infrared spectra of quenched glasses have absorption bands characteristic of CO 3 = and OH- molecules and no evidence for HCO 3 - . The effect of CO 3 = molecules dissolved in the olivine melilitite at high pressure is to suppress the near-liquidus crystallization of olivine and clinopyroxene and bring orthopyroxene and garnet on to the liquidus. We infer that olivine melilitite magmas may be derived by equilibrium partial melting (<5%) of pyrolite at 30 kb, 1150–1200 ° C, provided that both H2O and CO2 are present in the source region in minor amounts. Preferred conditions are 0< <0.5, 0.5< <1, and at low oxygen fugacities (相似文献   

12.
Thermochemical calculations and laboratory phase equilibration experiments on lavas of the 131 day 1983 Mt. Etna flank eruption of 0.1 km3 were undertaken to investigate possible systematic variations in inferred melt-phenocryst equilibration conditions as a function of time. The 1983 Mt. Etna lavas are multiply saturated; plagioclase, clinopyroxene and olivine, the dominant phenocrysts, occur in the ratio 1:1/2:1/4. Melts (glasses) plot close to the plagioclase saturated olivine-clinopyroxene low pressure cotectic on a Walker-O'Hara diopside-forsterite-silica diagram suggesting equilibration of melt and phenocrysts in a high level magma reservoir. Total pressures, temperatures and dissolved H2O concentrations were calculated using the isoactivity method of Carmichael and coworkers based on about 300 elelctron microprobe analyses of coexisting olivine, clinopyroxene and plagioclase phenocrysts, microphenocrysts and groundmass microlites for samples collected 6, 46 and 125 days after the start of the eruption. Total pressures (P t), temperatures and H2O contents based on representative olivine-clinopyroxene pairs are 140 MPa, 1105°C, 2.4 wt% H2O; 255 MPA, 1112°C, 1.0 wt% H2O and 85 MPa, 1096°C, 1.8 wt% H2O respectively for the early (283), middle (I83) and late (L83) samples. Corresponding equilibration depths are in the range 3 to 10 kilometers. Plagioclase feldspar phenocrysts, while showing more evidence of disequilibrium, provide compatible estimates of P t and T when analysis is restricted to the low anorthite mode of the plagioclase frequency-composition histograms: 133 MPa and 1115°C; 260 MPa and 1117°C and 103 MPa and 1104°C, repectively for 283, I83 and L83. The pre-eruptive (i.e., in situ) temperature-pressure gradient calculated from olivine-clinopyroxene equilibria is 10.6 K/kbar. This compares well with independent estimates of the temperature-pressure derivative of the (pseudo) invariant point composition (10 to 12 K/kbar) in both model (e.g., diopside-forsterite-anorthite, Presnall et al. 1978) and natural (e.g., Walker et al. 1979; Grove et al. 1982) systems. Apparently, magma within the Etna reservoir was in a quasiequilibrium state buffered by its multiply-saturated character immediately preceding eruption. The temporal variation of computed P t, T and H2O concentrations for melt-phenocryst equilibrium agrees well with predictions based on simulations of the withdrawal of magma from a body zoned with respect to dissolved H2O provided the temporal record of magma discharge is taken into account. Discharge varied by a factor of about 100 during the sample collection interval. The intermediate P t but high H2O content inferred for sample 283 reflects the withdrawal of H2O enriched magma during an early phase of high average discharge of about (350 m3/s) before evaculation isochrons became quasistationary. The high P t and relatively dry I83 magma reflects the deepening of the evacuation isochrons after 50 days of intermediate discharge with the development of quasi-stationary isochrons in time and space. Sample L83 from day 125 near the end of the eruption reflects the shoaling of evacuation isochrons (hence low P t and relatively high H2O content) associated with the observed low (0.5 m3/s) discharge. Our results show that thermochemical modeling efforts provide important opportunities for testing the predictions of magma with-drawal simulations.  相似文献   

13.
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing'an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yields ~(206)Pb/~(238)U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO_2=75.13 wt%-80.17 wt%), aluminum(Al_2 O_3=10.59 wt%-13.17 wt%) and alkali(Na_2 O+K_2 O=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.72-+3.08), low T_(DM2)(805-997 Ma),and high radioactive Pb with(~(206)Pb/~(204)Pb)_i of 18.710-19.304,(~(207)Pb/~(204)Pb)_i of 15.557-15.604 and(~(208)Pb/~(204)Pb)_i of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.  相似文献   

14.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

15.
Summary The erný Dl mineralization (Giant Mts., Czechoslovakia) consists of calcite veins cross-cutting metamorphic rocks and exhibiting a complex paragenesis of Ni-, Fe-, (Co)- and Cu-, Ag-arsenides associated with native arsenic. Several new minerals belonging to Cu–As and Cu–Ag–As systems were described from this deposit (koutekite, novakite, paxite, kutinaite). New data on paxite, novakite and kutinaite were obtained. Paxite, CuAs2, is monoclinic,P21/c,a=5.830,b=5.111,c=8.084 Å, =99.7°,Z=4,D calc=5.97 g/cm3, polysynthetically twinned along (010). Novakite belongs to the Cu–Ag–As system. It is monoclinic,C2/m,Cm orC2,a=16.269,b=11.711,c=10.007 Å, -112.7°,Z=4,D calc=8.01 g/cm3. The ideal formula is Cu20+x Ag1–x As10,x0.16. New microprobe analyses of kutinaite indicate a cell-content of 4 [Cu14Ag6As7],D calc=8.37 g/cm3.
Résumé La minéralisation du gisement de erný Dl (Monts des Géants, Tchécoslovaquie) se distingue par une paragenèse complexe d'arséniures de Ni, Fe, (Co), Cu et Ag associés à l'arsenic natif, et apparaissant dans des filons de calcite qui recoupent une série de roches métamorphiques. Plusieurs minéraux nouveaux appartenant aux systèmes Cu–As et Cu–Ag–As ont été découverts dans ce gisement (koutekite, novakite, paxite, kutinaïte). De nouvelles données sur la paxite, la novakite et la kutinaïte ont été obtenues. La paxite, CuAs2, est monoclinique,P21/c,a=5,830,b=5,111,c=8,084 Å, =99,7°,Z=4,D calc=5,97 g/cm3; elle est polysythétiquement maclée suivant (010). La novakite est une phase du système Cu–Ag–As. Elle est monoclinique,C2/m,Cm ouC2,a=16,269,b=11,711,c=10,007 Å, =112,7°,Z=4,D calc=8,01 g/cm3. Saformule idéale s'écrit Cu20+x Ag1–x As10,x0,16. Des analyses de la kutinaïte conduisent à 4 [Cu14Ag6As7] par maille,D calc=8,37 g/cm3.L'étude paragénétique a permis de voir que le système hydrothermal à erný Dl couvre un interval de température large, s'étalant de500° à 100°C environ. Une très forte activité d'arsenic au cours des épisodes minéralisants tardifs a abouti à la cristallisation des arséniures de Cu riches en arsenic, stables à basse température. Cinq épisodes minéralisants ont été reconnus: le dépôt des arséniures de Ni, Fe, (Co) (löllingite, nickéline, pararammelsbergite, chloentite) était suivi de: kutinaïte, koutekite, arsenic natif et arséniures de cuivre riches en arsenic (novakite, Cu2As, paxite). L'abondance des carbonates laisse entrevoir un rôle de composés ou de complexes de carbone dans l'évolution de ce système hydrothermal fortement réducteur.The study of mineral associations showed that the erný Dl hydrothermal system extended over a large temperature interval from 500° to 100°C. An extremely high arsenic activity during the late mineralization periods lead to the precipitation of low-temperature, As-rich copper arsenides. Five mineralization periods were distinguished: the precipitation of Ni-, Fe-, (Co)-arsenides (löllingite, nickeline, pararammelsbergite, chloanthite) was followed by kutinaite, koutekite, native arsenic and As-rich copper arsenides (novakite, Cu2As, paxite). The abundance of carbonates suggests a possible role of carbon compounds or complexes in the evolution of this highly reducing hydrothermal system.


With 2 Figures  相似文献   

16.
Evolution of grain size in synthetic marbles was traced from compaction of unconsolidated powder, through primary recrystallization and normal grain growth, to a size stabilized by second phases. To form the marbles, reagent grade CaCO3 was mixed with 0, 1 and 5 volume% mica and heat-treated under pressure with added water. Densification with negligible recrystallization occurred within one hour at 500° C and 500 MPa confining pressure. Primary recrystallization occurred at 500–550° C, causing increases of grain size of factors of 2–5. Resulting samples had uniform grain size, gently curved grain boundaries, and near-equilibrium triple junctions; they were used subsequently for normal grain growth studies. Normal grain growth occurred above 550° C; at 800° C, grain size (D) increased from 7 m (D 0) to 65 m in 24 hours. Growth rates fit the equation, D n -D 0 n =Kt, where K is a constant and n2.6. Minor amounts of pores or mica particles inhibit normal grain growth and lead to a stabilized grain size, D max, which depends on the size of the second phases and the inverse of their volume fraction raised to a power between 0.3 and 1. Once D max is reached, normal growth continues only if second phases are mobile or coarsen, or if new driving forces are introduced that cause unpinning of boundaries. Normal grain growth in Solnhofen limestone was significantly slower than in pure synthetic marble, suggesting that migration is also inhibited by second phases in the limestone.  相似文献   

17.
The dehydration rate of hydrous rhyolitic glasses at 475–875 °C was measured by in situ infrared (IR) spectroscopy in order to determine the diffusion coefficient of water in rhyolitic glasses. The IR spectra of glass thin sections were obtained at 90-s intervals during 90 min at high temperatures, and the change in absorbance at 3550 cm–1 corresponding to total water was monitored. The diffusion coefficients obtained from dehydration rates of the rhyolitic glasses are considered to be averaged value over the water-concentration profile in the sample. The averaged apparent diffusion coefficients increase with the initial total water content from 0.20 m2 s–1 for 0.7 wt% to 0.37 m2 s–1 for 2.8 wt% at 700 °C. The apparent activation energy for the diffusion of total water decreases with increasing initial water content from 112 ± 6 kJ mol–1 for 0.7 wt% to 60 ± 17 kJ mol–1 for 4.1 wt%. Assuming a linear relation between the diffusion coefficient of total water and the total water content, the diffusion coefficients at each initial total water content were also determined. The diffusion coefficients of total water at the water contents of 0.7 and 1.9 wt% and at 0.1 MPa were best fitted by ln D=[(12.9 ± 0.8) – (111 500 ± 6400)/RT] and ln D=[(10.6 ± 0.4) – (86 800 ± 2800)/RT], respectively, and are in agreement with previous data (D in m2 s–1, T in K). The present in situ IR dehydration experiment is a rapid and effective method for the determination of water diffusivity at high temperatures.  相似文献   

18.
Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt   总被引:2,自引:0,他引:2  
Fluid/melt distribution coefficients for F have been determined in experiments conducted with peraluminous topaz rhyolite melts and fluids consisting of H2O and H2O+CO2 at pressures of 0.5 to 5 kbar, temperatures of 775°–1000°C, and concentrations of F in the melt ranging from 0.5 to 6.9 wt%. The major element, F, and Cl concentrations of the starting material and run product glasses were determined by electron microprobe, and the concentration of F in the fluid was calculated by mass balance. The H2O concentrations of some run product glasses were determined by ion microprobe (SIMS). The solubility of melt in the fluid phase increases with increasing F in the system; the solubility of H2O in the melt is independent of the F concentration of the system with up to 6.3 wt% F in the melt. No evidence of immiscible silica- and fluoriderich liquids was detected in the hydrous but water-undersaturated starting material glasses (8.5 wt% F in melt) or in the water-saturated run product glasses. F concentrates in topaz rhyolite melts relative to coexisting fluids at most conditions studied; however, DF (wt% F in fluid/wt% F in melt) increases strongly with increasing F in the system. Maximum values of DF in this study are significantly larger than those previously reported in the literature. Linear extrapolation of the data suggests that DF is greater than one for water-saturated, peraluminous granitic melts containing 8 wt% F at 800° C and 2 kbar. DF increases as temperature and as (H2O/H2O+CO2) of the fluid increase. For topaz rhyolite melts containing 1 wt% F and with H2O-rich fluids, DF is independent of changes in pressure from 2 to 5 kbar at 800° C; for melts containing 1 wt% F and in equilibrium with CO2-bearing fluids the concentrations of F in fluid increases with increasing pressure. F-and lithophile element-enriched granites may evolve to compositions containing extreme concentrations of F during the final stages of crystallization. If F in the melt exceeds 8 wt%, DF is greater than one and the associated magmatic-hydrothermal fluid contains >4 molal F. Such F-enriched fluids may be important in the mass transport of ore constituents, i.e., F, Mo, W, Sn, Li, Be, Rb, Cs, U, Th, Nb, Ta, and B, from the magma.  相似文献   

19.
Data from experimentally-induced diffusion profiles at approximately 40 Kbar, 1,300–1,500° C in spessartine-almandine couples and a pyrope-almandine couple at 40 Kbar, 1,440° C, described in Part I, were used to derive tracer diffusion coefficients (D *) of Fe, Mn and Mg in garnet. The experimental data were fitted by numerical simulations that model multicomponent, compositionally-dependent difussion, including the effects of nonideal thermodynamic mixing. The simulations use the formalism of irreversible thermodynamics and an eigenvector technique of solution. We were able to fit the asymmetrical spessartine-almandine profiles using constant D * and either the Darken/Hartley-Crank or Manning-Lasaga models relating D * and interdiffusion coefficients, and both models yielded D Mg * consistent with the direct measurement of D Mg * in by Cygan and Lasaga (1985) at lower temperatures (750–900° C). The results (equations 4.1–4.3 and Table 1) indicate that D Fe * D Mg * <D Mn * and Q FeQ Mg>Q Mn, where Q is the activation energy. In contrast, the asymmetry of pyrope-almandine profiles is too great to fit with either tracer model assuming constant D * and indicates that D Mg * is similar to its value in spessartine-almandine couples but D Fe * is an order of magnitude less. The fit also suggests that D Ca * < D Fe * Mg * in pyrope-almandine couples. Synthesis of data from the two types of diffusion couples suggests that D Mg * is insensitive to compositional changes, whereas D Fe * is affected by Mn/Mg and Fe/Mg ratios and probably by other factors. These compositional effects on tracer coefficients are compatible with those documented by Morioka (1983) for cation diffusion in olivine.  相似文献   

20.
Monophase negative-crystal shaped CO2 inclusions occurring isolated, in small clusters, or in well-healed intragranular fractures are common in the leucosome quartz of the 1700m.y.-old migmatites from the east-central Colorado Front Range. They are, however, quite rare in the mafic selvage and paleosome (host rock) quartz. The mode of occurrence suggests that these are the earliest inclusions to form. In addition to the difference in abundance of the inclusions, there is a difference in CO2-density distribution between migmatitic zones. The temperatures of homogenization for the leucosome inclusions range and +l°C from –67° C to +20° C with two maxima (at –21° C) while those for the paleosome and selvage inclusions are –37° C to +20° C with a single maximum at + 5° C. These differences between the migmatitic zones which occur on the scale of a few centimeters suggest that the formation of these inclusions was related to the migmatization process. The densities corresponding to the Th maxima are appropriate for the P-T conditions for migmatization estimated from the mineral geobarometer/geothermometer. These inclusions must contain nearly pure CO2, as their final melting temperatures (–56.5° to –57.2° C) are very close to that of the triple point of CO2. Their composition also was confirmed by Raman spectroscopic analyses.It has been proposed by other workers that CO2 fluid in the inclusions could form from an H2O-CO2 fluid when H2O is partitioned into the silicate melt. Such partitioning should result in some early H2O-rich inclusions: H2O must be released as the melt crystallizes. As found in migmatites from other areas, most aqueous inclusions in the Front Range rocks are obviously much younger than the early CO2 ones. However, early H2O-rich fluid may still be preserved, at least in three ways: (A) in rare, isolated or clustered inclusions within quartz inclusions in feldspar; (B) as inclusions in microcline porphyroblasts; (C) in hydrous alteration products of feldspar. (A) contain dilute fluids, 1 to 6 wt% NaCl equivalent. The densities of (A) as well as those of the early CO2 inclusions found in the quartz inclusions in feldspar are appropriate for the range of P — T conditions estimated for migmatization. These early inclusions must have been preserved because of protected environment. Inclusions (B), found to contain H2O (and possibly CO2) by infrared analyses, must be early because they are absent from recrystallized grains. (B) and (C) are much more common in the leucosome than in the other zones suggesting that they are related to migmatization process. The concentration of early CO2 inclusions in the leucosome is consistent with the model of migmatization in which fluid concentration in the leucosome was a cause of melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号