首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Astroparticle Physics》2009,30(6):366-372
We present results of a search for relativistic magnetic monopoles with the Baikal neutrino telescope NT200, using data taken between April 1998 and February 2003. No monopole candidates have been found. We set an upper limit 4.6 × 10−17 cm−2 s−1 sr−1 for the flux of monopoles with βm = 1. This is a factor of 20 below the Chudakov–Parker bound which is inferred from the very existence of large-scale galactic magnetic fields.  相似文献   

2.
《Astroparticle Physics》2009,32(2):112-119
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate VHE gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect VHE gamma rays using the 10 m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 h for ON source, and 80.8 h for OFF source data. No significant excess of VHE gamma rays has been found at three regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are G for the center of the brightest X-ray emission region and G for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.  相似文献   

3.
Based on data from the Baksan underground scintillation telescope (BUST) for the period 2001–2004, we searched for cosmic gamma-ray bursts (GRBs) at primary photon energies of 0.5 TeV or higher. We obtained constraints on the rate of bursts with durations of 1–10 s for fluences within the range 4.6 × 10−3-1.8 × 10−2 erg cm−2 in the declination band 30° ≤ δ ≤ 80°. We searched for ultrahigh-energy gamma rays from GRBs detected on spacecraft during and within ±2 h of the burst. No statistically significant excesses above the background of random coincidences were found. The derived constraints on the ultrahigh-energy gamma-ray fluence during GRBs lie within the range 4.6 × 10−3-3.7 × 10−2 erg cm−2.  相似文献   

4.
We have used the unique low frequency sensitivity of the Large Phased Array(LPA) radio telescope of Pushchino Radio Astronomy Observatory to collect a dataset consisting of single pulse observations of second period pulsars in the Northern Hemisphere. During observation sessions in 2011–2017, we collected data on 71 pulsars at a frequency of 111 MHz using a digital pulsar receiver. We have discovered Giant Radio Pulses(GRPs) from pulsars B0301+09 and B1237+25, and confirmed earlier reported generation of anomalously strong(probable giant) pulses from B1133+16 in a statistically significant dataset. Data for these pulsars and from B0950+08 and B1112+50, earlier reported as pulsars generating GRPs, were analyzed to evaluate their behavior over long time intervals. It was found that the statistical criterion(power-law spectrum of GRP distribution of energy and peak flux density) seems not to be strict for pulsars with a low magnetic field at their light cylinder. Moreover, spectra of some of these pulsars demonstrate unstable behavior with time and have a complex multicomponent shape. In the dataset for B0950+08, we have detected the strongest GRP from a pulsar with a low magnetic field at its light cylinder ever reported, having a peak flux density as strong as 16.8 kJy.  相似文献   

5.
The ANTARES telescope, currently in construction, is aiming to detect high energy neutrinos. Data from the first line of the detector, which became operational recently, demonstrates that the nominal time and space resolutions are achieved. Various models predict the emission of high energy neutrinos from astrophysical sources such as Supernova Remnants, Microquasars, Active Galactic Nuclei and Gamma Ray Bursts. With the custom designed data acquisition system of this detector, in combination with the existing satellite alert systems, the ANTARES telescope has an increased sensitivity for neutrinos from Gamma Ray Bursts compared to conventional time independent sources. Gabrielle Lelaizant on behalf of the ANTARES Collaboration.  相似文献   

6.
The region of SGR 1806-20 localization was observed during its gamma-ray activity in 2001. The observations have been performed on the 6-meter telescope of the Special Astrophysical Observatory, using the Panoramic Photometer-Polarimeter (PPP). The search for variability was performed on the 10−6–10 s time scale, and its results were compared to the properties of corresponding X-ray flares. This work has been supported by the Russian Foundation for Basic Research (grant No 04-02-17555), Russian Academy of Sciences (program “Evolution of Stars and Galaxies”), and by the Russian Science Support Foundation. The authors would also like to thank the anonymous referee for his/her valuable comments.  相似文献   

7.
We have developed a method of searching for the connections between the isolated radio pulsars and supernova remnants, based on the analysis of their kinematic characteristics. We investigate fairly young (τ ch ≲ 106 yr) radio pulsars with known proper motions and estimated distances (dispersion measures), and supernova remnants located no more than 1–2 kpc away from them. Using a standard empirical radial velocity distribution, we have constructed 100–200 thousand trajectories for each of these pulsars, tracing back their possible motion in the Galactic gravitational field on a time-scale of a few million years. The probabilities of their close encounters with the SNRs at epochs consistent with the age of the pulsar are analyzed. When these probabilities exceed considerably their reference values, obtained by assuming a purely random encounter between the objects, we conclude that the pulsars may have originated in the SNRs under consideration. Out of eight preselected pairs of pulsar-SNR association candidates, two pairs, J 1829-1751 / G16.2-2.7 and J 1833-0827 / G24.7-0.6 may have a common origin with a high probability.  相似文献   

8.
The discovery of ubiquitous habitable extrasolar planets,combined with revolutionary advances in instrumentation and observational capabilities,has ushered in a renaissance in the search for extraterrestrial intelligence(SETI).Large scale SETI activities are now underway at numerous international facilities.The Five-hundred-meter Aperture Spherical radio Telescope(FAST)is the largest single-aperture radio telescope in the world,and is well positioned to conduct sensitive searches for radio emission indicative of exo-intelligence.SETI is one of the five key science goals specified in the original FAST project plan.A collaboration with the Breakthrough Listen Initiative was initiated in 2016 with a joint statement signed both by Dr.Jun Yan,the then director of National Astronomical Observatories,Chinese Academy of Sciences(NAOC),and Dr.Peter Worden,Chairman of the Breakthrough Prize Foundation.In this paper,we highlight some of the unique features of FAST that will allow for novel SETI observations.We identify and describe three different signal types indicative of a technological source,namely,narrow band,wide-band artificially dispersed and modulated signals.Here,we propose observations with FAST to achieve sensitivities never before explored.For nearby exoplanets,such as TESS targets,FAST will be sensitive to an EIRP of 1.9×1011 W,well within the reach of current human technology.For the Andromeda Galaxy,FAST will be able to detect any Kardashev type II or more advanced civilization there.  相似文献   

9.
The origin of the highest-energy particles in nature, ultra-high-energy(UHE) cosmic rays, is still unknown. In order to resolve this mystery, very large detectors are required to probe the low flux of these particles — or to detect the as-yet unobserved flux of UHE neutrinos predicted from their interactions. The‘lunar Askaryan technique' is a method to do both. When energetic particles interact in a dense medium,the Askaryan effect produces intense coherent pulses of radiation in the MHz–GHz range. By using radio telescopes to observe the Moon and look for nanosecond pulses, the entire visible lunar surface(20 million km~2) can be used as a UHE particle detector. A large effective area over a broad bandwidth is the primary telescope requirement for lunar observations, which makes large single-aperture instruments such as the Five-hundred-meter Aperture Spherical radio Telescope(FAST) well-suited to the technique. In this contribution, we describe the lunar Askaryan technique and its unique observational requirements. Estimates of the sensitivity of FAST to both the UHE cosmic ray and neutrino flux are given, and we describe the methods by which lunar observations with FAST, particularly if equipped with a broadband phased-array feed, could detect the flux of UHE cosmic rays.  相似文献   

10.
Byurakan Astrophysical Observatory; SKB Granit; Geneva Observatory; Flight Control Center. Translated from Astrofizika, Vol. 32, No. 1, p. 5–13, January–February, 1990.  相似文献   

11.
The observations and the plate reduction technique for the determination of positions and absolute proper motions which is used in Potsdam are described. Recent results have shown that an accuracy of about 0 . 1 for positions and 0 . 7 cent . –1 for proper motions can be achieved both for bright (8m–12m) and faint (16m–18m) stars. Three astrometric programmes using the Tautenburg plates are presented.  相似文献   

12.
13.
Research into star-forming regions, evolved HII regions, late-type stars with circumstellar dust shells and comet Halley using spectroscopic observations made with the Hartebeesthoek radio telescope is reviewed.  相似文献   

14.
15.
Photometric properties of deep Tautenburg Schmidt plates in the UBV system over the whole field and over a wide range of stellar magnitudes are discussed. Different reduction models based on the calibration curve alone and with additional terms containing colour and plate coordinates are considered. With the filter-emulsion combinations used the Johnson UBV system can be reproduced quite well by the Tautenburg telescope. The accuracy of photometric data can be improved if geometrical terms are taken into account. For deep plates with a significant effect of background nebulosity a supplementary term is to be included in the reduction model. The polynomial coefficients vary in dependence on spectral bands and individual properties of each plate.  相似文献   

16.
MAGIC is currently the world’s largest single dish ground based imaging atmospheric Cherenkov telescope. During the first year of operation, more than 20 extragalactic sources have been observed and several of them detected. Here we present results of analyzed data, including discussion about spectral and temporal properties of the detected sources. In addition, we discuss implications of the measured energy spectra of distant sources for our knowledge of the extragalactic background light. Daniel Mazin for the MAGIC collaboration.  相似文献   

17.
18.
China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts suggest that this space telescope should be installed inside the Chinese space station. In accord with this suggestion we put forward our first configuration, i.e., to adopt a coud′e system for this telescope.This coud′e system comes from the Chinese 2.16 m telescope's coud′e system, which includes a relay mirror so that excellent image quality can be obtained. In our second configuration, we suggest that the whole space telescope fly freely as an independent satellite outside the space station. When it needs servicing, for example, changing instruments, refilling refrigerant or propellant, etc., this space telescope can fly near or even dock with the core space station. Although some space stations have had accompanying satellites, the one we propose is a space telescope that will be much larger than other accompanying satellites in terms of weight and volume. On the basis of the second configuration, we also put forward the following idea: the space station can be composed of several large independent modules if necessary.  相似文献   

19.
20.
It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics(CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope(~ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles(i) of the mirror and different temperature differences(?T) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-FranceHawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ?T for thermal control of the primary mirror according to the simulation, empirical data and site seeing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号