首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation(and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae(i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally,the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 10~2-10~3 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors(e.g., Advanced LIGO) and X-ray telescopes(e.g., the Chinese HXMT satellite and e XTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.  相似文献   

2.
The properties of the neutrino burst generated by massive 1.5–2M collapsing stellar iron-oxygen cores are discussed. Special attention is given to the neutrino heat conductivity theory which allows us to calculate the transport of neutrinos through the collapsing stellar core up to the formation and during the first seconds of cooling of a hot hydrostatic neutron star. The theoretical predictions seem to be in good agreement with both the KAMIOKANDE II and IMB data on the neutrino burst detected from SN 1987A. The most reliable constraint on the neutrino rest mass is shown to bem v <20–30eV, while the safest upper limit on the neutrino magnetic moment, µ v < 10–11 Bohr magnetons, results rather from the cooling of white dwarfs than from the SN 1987A neutrino data.Presented to the 13th International Conference Neutrino-88, Boston, U.S.A., 5–11 June, 1988.  相似文献   

3.
It is argued that the neutrino bursts registered on February 23.316 UT, 1987 signalized the transition of a fresh-borne neutron star into a superdense state. The neutron star is supposed to be formed approximately five hours before at February 23.12 UT in the supernova SN 1987a in the Large Magellanic Cloud.  相似文献   

4.
We carried out a Monte Carlo simulation calculation on the observed data of neutrino events of the supernova SN1987A. Our results show that the best value for the rest-mass of neutrino is 3–4 eV. We also calculated the light curve of the neutrino bursts and the energy spectrum.Our results impose constraints on the rest-mass of neutrino and the mass of the precursor of SN 1987A.  相似文献   

5.
Three decades have passed since the supernova SN 1987A was observed in the Large Magellanic Cloud, inside which the product is most likely a neutron star (NS) formed in the core collapse explosion.Although lots of observations with sensitive radio telescopes have taken place, astronomers have not yet detected any evidence for a radio pulsar around the remnant of 1987A. To investigate pulsars inside the SN remnants, we calculate the cut-off oscillation frequency of the plasma around the presumed NS inside SN1987A, as shown to be about 33 GHz at present (2018 CE), which is much higher than the favorite “searching window” (e.g. L-band ∼ 1.4 GHz) of radio pulsar surveys that have been commonly exploited by astronomers. Since radio waves with frequencies lower than the plasma cut-off frequency cannot penetrate the SN remnant media, we suggest that astronomers use higher frequency bands to search for a pulsar in SN 1987A.Furthermore, with the expansion of SN remnant media, we find that the plasma cut-off frequency can decay to the L-band (1.4 GHz) in the future. The strategy of finding a pulsar of SN 1987A is that either the high frequency bands of radio telescopes, or the high energy detections at Gamma-ray and X-ray bands by space satellites are applied.  相似文献   

6.
超新星SN 1987A的热光度演化──内部中子星的贡献   总被引:1,自引:1,他引:0  
本文介绍了超新星SN1987A爆发六年多来其热光度演化的研究情况.爆发后的前800天,观测的热光度曲线与由超新星爆发时合成的放射性元素的放射衰变加热模型符合得很好.但900天以后,观测的热光度曲线比考虑了所有放射性元素贡献后的理论曲线下降得还要缓慢.这可能表明有新的能源在起作用.我们认为这个新的能源可能是超新星爆发时产生的中子星的吸积.通过吸积超新星爆发时抛射气壳中小于逃逸速度的部分物质而增大SN1987A的热光度.这一模型能很好地解释900天以后的光度曲线的下降变级以及900至1200天之间光度曲线的凸起,这也为内部中子星的存在提供了间接的证据.  相似文献   

7.
A quasi-one-dimensional hydrodynamic model for the collapse of a rotating iron stellar core is used to determine the neutrino spectra in the limiting case of total transparency to neutrino emission (without any deposition effect). The derived spectra allow the previously constructed spectra used to theoretically estimate the number of events in the LSD underground neutrino detector from SN 1987A to be refined. At typical iron stellar core parameters, including those that characterize the core rotation specified in the initial conditions of the model, this number has turned out to be 1.6, which is close in order of magnitude to its experimental value of 5. Here, we compare in detail these results by assuming that the transparency of the collapsing iron core itself could be attributable to the development of its three-dimensional dynamical instability—the subject of future theoretical studies. The physical formulation of the problem coincides closely with the collapse model proposed in our previous paper, where the above number of events turned out to be 0.5. We have confirmed the previously published results with regard to the neutrino spectra, including the significant superiority of electron neutrinos over electron antineutrinos in them. The hydrostatically equilibrium configuration (a rotating collapsar) obtained in our model calculation is discussed in comparison with self-similar solutions that are close in physical formulation of the problem. This result seems a nontrivial consequence of the included rotation effects that hinder nonstop collapse established in the mentioned self-similar solutions.  相似文献   

8.
In this paper, the neutrino mass has been determined from SN1987a observation in a manner that the simultaneity of neutrino emission is not regarded as the starting point, but is itself defined through the analysis by Monte-Carlo simulation. The result is that the neutrino mass lies in 3–4 eV, possiblym v 3.6 eV. Neutrino luminosity variation and neutrino spectrum are also obtained. Comparison with theories gives further support to the mass determination, and also predicts the mass of progenitor star of SN1987a to be in the range of 12–25M .The project supported by the National Natural Science Foundation of China.  相似文献   

9.
In this paper the contributions of various radioactive substances (56Co, 57Co, 44Ti and 22Na) in the envelope of the supernova SN 1987A to the evolution of the bolometric luminosity are calculated and the several types of radiation, which may probably exist in the interior neutron star, as well as their contributions to the bolometric luminosity are investigated. After comparison of the results of calculation with the observation of CTIO and ESO, it is believed that after about 900 days the nuclear decay energy is no longer the unique energy source which determines the bolometric luminosity evolution of SN 1987A, that the radiation coming from the interior neutron star begins to play a dominating role in the bolometric luminosity evolution and that the most important mechanism of radiation of the neutron star is accretion.  相似文献   

10.
We consider the time, angular, and energy distributions of SN 1987A events and discuss the quality of their agreement with the expectations. A global interpretation is made by considering a simple model based on the standard scenario for the explosion. Despite the contrasting and confusing indications, a straightforward fit to the data provides a result that does not contradict but rather supports the expectations. The calculated electron antineutrino flux is applied to predict the relic neutrino signal. The article was translated by the authors.  相似文献   

11.
The effects of ion screening in stellar core collapses are investigated based on a new progenitor star model.Simulation results show that ion screening slightly affects the leptons and decreases explosion energy,which is a negative factor for energy transfer supernova explosions.We also investigate the effect on type Ⅱ-supernova explosions of neutrino-nucleus elastic scattering based on the new progenitor star model.It is shown that,compared with the previously calculated results,neutrinos-nucleus elastic scattering in stellar core collapses is more severe,leading to an obvious reduction of the neutrino leakage energy loss and an increase of supernova explosion energy.  相似文献   

12.
We consider an improved rotational mechanism of the explosion of a collapsing supernova. We show that this mechanism leads to two-stage collapse with a phase difference of ~5 h. Based on this model, we attempt a new interpretation of the events in underground neutrino detectors on February 23, 1987, related to the supernova SN 1987A.  相似文献   

13.
Light-echo measurements show that SN 1987A is 425 pc behind the LMC disk. It is continuing to move away from the disk at 18 km s-1. Thus, it has been suggested that SN 1987A was ejected from the LMC disk. However, SN 1987A is a member of a star cluster, so this entire cluster would have to have been ejected from the disk. We show that the cluster was formed in the LMC disk, with a velocity perpendicular to the disk of about 50 km s-1. Such high-velocity formation of a star cluster is unusual, having no known counterpart in the Milky Way.  相似文献   

14.
Nonlinear processes describing the interaction of neutrinos with collective plasma oscillations and the excitation of plasma turbulence by a large neutrino flux is discussed. The excitation considered is the inverse processes of neutrino emission by plasma waves first considered by Tsytovich (V.N. Tsytovich, Soviet Fiz. Dokl. 9 (1965) 1114). The process is similar to a beam plasma instability considered as inverse Landau damping in which the usual electromagnetic interactions are important. In the neutrino beam relaxation the weak interaction can play a similar role. We emphasize here the possibility of another process namely the interaction of an intense neutrino flux with a strongly turbulent plasma. The turbulence can also be assumed to be due to the shock produced at the early stages of a type II supernova (SN) explosion. The scattering of the neutrinos in the turbulent plasma is shown to be sufficient for transferring momentum and energy from the neutrino flux to the plasma causing the shock to continue moving outward and eventually creating the blow-off of the mantle of the star producing type II SN.  相似文献   

15.
The neutrino burst from Supernova 1987A detected by Mont Blanc, Kamiokande II, IMB, and BAKSAN have been studied by Jurkevich's mathematical technique of search for periodicities. It is found that all the data exhibit 11±0.2 ms period. There are also other periods, but they are almost exact multiples of 11 ms. We suggests that the 11 ms period is the pulsation period of the neutron core of the supernova remnant. From the observed period of neutrino data it is also possible to predict the masses of the neutrinos.  相似文献   

16.
Twenty three years ago on February 23, 1987, the explosion of the SN in the L.M.C. was observed both optically and by underground detectors. The optical observations were done in Chile and Australian observatories while the neutrino burst was detected by several underground experiments in the Northern Hemisphere, running at that time: Mt. Blanc in Italy, Kamioka in Japan, and Baksan in Russia and IMB in the USA. For the first time in the history of human existence, an astrophysical phenomenon has been observed in underground detectors. In this astrophysical event, the Mt. Blanc experiment detected five pulses on-line that were not at the same time, as detected by the other three detectors around five hours later. It is still not clear to astrophysicists why two bursts at two different times have been detected and how an SN can generate two neutrino bursts. After 23 years a model has proposed an explanation for a double stage collapse at two different times, as recently suggested by V.S. Imshennik and O. Ryazhskaya. In this paper, a detailed occurrence of something strange that happened on February 23rd is presented while most of the scientific information has been exhibited in other published papers.  相似文献   

17.
We estimate the flux of the gamma-ray burst (GRB) neutrino background and compute the event rate at SK and TITAND in the collapsar model, assuming that GRB formation rate is proportional to the star formation rate. We find that the predicted background neutrino flux is highly sensitive to unknown model parameters, mainly to the mass–accretion rate, to the fraction of disk energy emitted in thermal neutrinos (as opposed to emission through electromagnetic processes), and to the fraction of collapsar events leading to GRBs. The predicted neutrino flux varies over many orders of magnitude as the values of unknown model parameters are varied. We investigate the detection possibility of thermal neutrinos from collapsars which lead to GRBs by TITAND. We find that the GRB neutrino background might be detected by TITAND within 10 yrs only for the optimistic cases in which the average mass–accretion rate is high ( a few M s−1), and the probability that one collapsar generates a GRB is high (f=0.5–1.0).  相似文献   

18.
We present spectroscopic and photometric observations of the peculiar Type II supernova (SN) 1998A. The light curves and spectra closely resemble those of SN 1987A, suggesting that the SN 1998A progenitor exploded when it was a compact blue supergiant. However, the comparison with SN 1987A also highlights some important differences: SN 1998A is more luminous and the spectra show bluer continua and larger expansion velocities at all epochs. These observational properties indicate that the explosion of SN 1998A is more energetic than SN 1987A and more typical of Type II supernovae. Comparing the observational data with simulations, we deduce that the progenitor of SN 1998A was a massive star  (∼25 M)  with a small pre-supernova radius  (≲6 × 1012 cm)  . The Ba  ii lines, unusually strong in SN 1987A and some faint II-P events, are almost normal in the case of SN 1998A, indicating that the temperature plays a key role in determining their strength.  相似文献   

19.
Basic characteristics of the “response” of underground neutrino detectors to the explosion of SN 1987A occurred on February 23, 1987, are presented. We discuss the evolution of our viewpoint on the interpretation of the results concerning the detection of neutrino radiation from the supernova over the past 20 years.  相似文献   

20.
A statement of the problem of gravitational collapse and a computational method are described. The main feature of the collapse — its extremely high heterogeneity — is taken into account. The structure of a collapsing star is characterized by a dense and hot nucleon core which is opaque with respect to neutrino radiation and is embedded in to and extended envelope, almost transparent to neutrinos. The envelope is gradually being accreted onto the core. The enormous amount of energy, radiated in the form of neutrinos and antineutrinos, make us pay particular attention to relatively small absorption of neutrino radiation by extended envelope (so-called energy of deposition). The inclusion of the energy deposition in the calculations is of importance for the problem of transformation of an implosion into an explosion. The deposition is taken into consideration in the approximation of diluted neutrino radiation which escapes from neutrino photosphere and is partially absorbed in the envelope. Both the generation of energy due to deposition and the change of neutronto-proton ratio are taken into account. The increase of the mass of the core, which is opaque with respect to neutrino radiation, is fully taken into account in the calculations of the gravitational collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号