首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations of sea ice are different in different regions in Antarctica, thus have different impacts on local atmospheric circulation and global climatic system. The relationships between the sea ice in Ross Sea and Weddell Sea regions and the synoptic climate in summer of China are investigated in this paper via diagnostic analysis methods by using global sea ice concentration gridded data covering Jan. 1968 through Dec. 2002 obtained from Hadley Center, combined with Geopotential Height on 500hPa and 100hPa over North Hemisphere and monthly precipitation and air temperatures data covering the corresponding period over 160 meteorological stations in China obtained from CMA ( China Meteorological Administration). Results disclose that both these two regions are of indicative meanings to the climate in summer of China. The Ross Sea Region is the key sea ice region to the precipitation in Northeast China in summer. More sea ice in this region in September will result in less precipitation in Northeast China in the following June. Weddell Sea Region is the key sea ice region to the air temperature in Northeast China in summer. More sea ice in this region in September will contribute to lower air temperature in Northeast China in the following June.  相似文献   

2.
The data of 160 national meteorological observatory(NMO)stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.  相似文献   

3.
The data of 160 national meteorological observatory (NMO) stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.  相似文献   

4.
Global climate change has a wide range of impacts, and this paper presents an investigation on how global warming has changed the relationship between air temperature and latitude & altitude using the meteorological data obtained from 160 stations in China. The investigation indicates that there are very distinct seasonal differences in patterns of temperature variation as a function of latitude and altitude: a very significant latitude effect in winter and a very significant altitude effect in summer. However, with global warming, the latitude effect in winter is weakening and the altitude effect in summer is strengthening. This pattern of change in the relationship between temperature and latitude & altitude is helpful in efforts to reconstruct and explain the past temperature patterns and variations.  相似文献   

5.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

6.
To improve the understandings on regional climatic effects of past human-induced land cover changes,the surface albedo changes caused by conversions from natural vegetation to cropland were estimated across northeastern China over the last 300 years,and its climatic effects were simulated by using the Weather Research and Forecasting (WRF) model.Essential natural vegetation records compiled from historical documents and regional optimal surface albedo dataset were used.The results show that the surface albedo decreased by 0.01-0.03 due to conversions from grassland to cropland in the Northeast China Plain and it increased by 0.005-0.015 due to conversions from forests to cropland in the surrounding mountains.As a consequence,in the Northeast China Plain,the surface net radiation increased by 4-8 W/m 2,2-5 W/m 2,and 1-3 W/m 2,and the climate was therefore warmed by 0.1℃-0.2℃、0.1℃-0.2℃、 0.1℃-0.3 ℃ in the spring,autumn and winter,respectively.In the surrounding mountain area,the net radiation decreased by less than 1.5 W/m 2,and the climate was therefore cooled too slight to be detected.In summer,effects of surface albedo changes on climate were closely associated with moisture dynamics,such as evapotranspiration and cloud,instead of being merely determined by surface radiation budget.The simulated summer climatic effects have large uncertainties.These findings demonstrate that surface albedo changes resulted in warming climate effects in the non-rainy seasons in Northeast China Plain through surface radiation processes while the climatic effects in summer could hardly be concluded so far.  相似文献   

7.
Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming   总被引:2,自引:1,他引:2  
Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vege- tation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Kunlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.  相似文献   

8.
Human-induced land use/cover change (LUCC) forms an important component of global environmental change. Therefore, it is important to study land use/cover and its change at local, regional and global scales. In this paper we conducted the study of land use change in Northeast China, one of the most important agricultural zones of the nation. From 1986 to 2000, according to the study results obtained from Landsat images, widespread changes in land use/cover took place in the study area. Grassland, marsh, water body and woodland decreased by 9864, 3973, 1367 and 10,052km2, respectively. By comparison, paddy field, dry farmland, and built-up land expanded by 7339, 17193 and 700km2, respectively. Those changes bore an interactive relationship with the environment, especially climate change. On the one hand, climate warming created a potential environment for grassland and marsh to be changed to farmland as more crops could thrive in the warmer climate, and for dry farmland to paddy field. On the other hand, the changed surface cover modified the local climate. Those changes, in turn, have adversely influenced the local environment by accelerating land degradation. In terms of socio-economic driving forces, population augment, regional economic development, and national and provincial policies were confirmed as main driving factors for land use change. Foundation item: Under the auspices of the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-341), National Natural Science Foundation of China (No. 40871187, 40801208)  相似文献   

9.
In the paper, by use of the monthly mean temperature data of 12 stations in the vicinity of Antarctic Peninsula, the temperature series during 1903 - 2000 is founded and the interdecadal oscillation of the temperature are discussed. The results indicate that 1) There are three jumps during 1919 - 1923, 1947 - 1953 and 1976 - 1982 in recent hundred years and the stable climate step between two jump points lasted about 30 years. 2) Annual mean temperature is increased by 0. 730℃ in an echelon during 1903 -2000, the warming extent is dissimilarity in each season, the maximum of warming is in the winter and the minimum of warming is in summer. 3) The ice decline trend is presented in the index of Ice concentration in the vicinity sea of Antarctic Peninsula, which shows a -0. 2053/10a drop, and the decrease trend of the ice concentration index in summer half year (Dee-May) is found much more obviously than that in winter half year (Jun-Nov). 4) There is better negative relationship between the temperature and the Ice concentration index in Antarctic Peninsula and its vicinity sea, which correlation coefficient of is exceed the significance level of 5% in summer, autumn and annual.  相似文献   

10.
在全球气候变暖的背景下,城市夏季高温热浪已经成为城市最严重的气象灾害之一,给城市居民健康和经济发展带来了巨大的影响。以2013年8月7日-13日的南京高温热浪灾害事件为例,基于Landsat 8 OLI 卫星遥感数据、MODIS卫星遥感数据和气象站点数据,在MODIS地表温度降尺度基础上,估算近地表气温,进而结合空气相对湿度的空间插值数据计算南京地区100 m分辨率的炎热指数和高温热浪指数,分析其时空分布特征。结果表明:在这次高温热浪演变过程中,南京炎热指数呈现先升高后降低的变化趋势,8月11日炎热指数最高,平均达到86.99,12日降到最低值,平均值为85.05;高温热浪强度主要集中于轻度热浪与中度热浪,随着时间的推移,其范围也呈现先扩大后减小的趋势;在空间分布上,南京北部及中心城区的炎热指数较高,主要表现为中度热浪,而南部地区及中心城区周边郊区较低,主要为轻度热浪,山体和水域炎热指数则最低,多为无热浪。  相似文献   

11.
全球气候的不断变化使得生物生境受到极大影响。气温作为最基本的气候要素,其变化迁移会胁迫生物对此做出响应,造成生物群落的迁徙。气温变化速度将气温看作物质的运动,能够直观地表示气温时空变化特征,对研究生物分布地理界限变化具有重要的指导意义。本文利用1961-2013年的全国每月平均温度数据集,分析了过去50多年中国东北与华北地区之间气温变化速度的区域差异。结果表明:东北与华北两地区整体气温变化速度均值为5.60 km/year,速度范围主要集中于0~9 km/year之间,约占总数的90%。东北地区气温变化速度均值大于华北地区。其中,东北速度均值为5.85 km/year,华北为5.41 km/year。从区域内部来看,东北地区气温变化速度整体较高,三省中黑龙江与吉林速度较高,辽宁省速度变化相对较小。华北气温变化速度高值区域主要分布在内蒙古高原与河北、天津的小部分地区,其他地区的气温变化速度则相对较小。  相似文献   

12.
中国东北三省大豆虚拟水时空分异及其影响因素研究   总被引:1,自引:0,他引:1  
水资源分布不均制约了地区农业生产。从虚拟水角度研究作物需水的时空变化特征及影响因素对提高水资源的合理配置与利用效率,缓解地区水资源短缺问题具有重要参考意义。本文基于Penman-Monteith模型和GIS地统计分析工具,从虚拟水视角分析1986-2012年东北大豆生长季内的需水量变化和虚拟水时空分异特征及其影响因素。结果表明:①1986-2012年,东北地区大豆生长季增温明显,平均风速下降显著,相对湿度整体下降,日照时数有增有减,气候暖干化趋势加剧。②东北大豆生长季内需水量西南多东北少,南部地区需水量减少而北部增加。平均风速的显著下降导致大豆需水量减少,其余气象因子变化均导致需水量增加,温度变化对需水量影响最大,相对贡献率为36.9%,其次为相对湿度、日照时数和平均风速。③大豆虚拟水的空间分布整体为西多东少,虚拟水变化以下降为主(80.6%站点)。虚拟水高值区集中于东北地区西部,向东虚拟水含量降低。气候变化导致了大豆需水量的增加,进而使虚拟水上升,大豆生产变化尤其是单产增长则使得虚拟水下降,气候变化对大豆虚拟水的影响抵消了部分大豆生产变化导致的虚拟水下降。因此,针对大豆虚拟水的时空分异特征,适当调整东北地区大豆的生产布局、选取如耐高温耐旱等大豆品种以及调整灌溉、施肥等田间管理措施等是气候变化背景下提高大豆水资源利用效率的有效适应措施。  相似文献   

13.
The regional observed temperature and precipitation changes and their abrupt jumps disturbed by large-scale reclamation in the Sanjiang Plain, Northeast China were studied. Mean annual temperature of the region was tending to go up and has increased by 1.2-2.2℃ over the past 50 years. A warming jump of mean annual temperature of the region occurred in the 1980s, which had an increase amplitude of 0.9℃. Linear tendency rates of annual precipitation were negative in most of the region. The maximum of annual precipitation decrease was 155.8mm over the past 50 years. An abrupt decrease of regional annual precipitation happened in the middle of the 1960s,which had a decrease of 102.1 mm. Based on the fact of climatic change of the Sanjiang plain over the past 50 years,it is held that the region had larger warming amplitude than that change of the Sanjiang Plain over the past 50 years,it is held that the region had larger warning amplitude than that of the surrounding areas in the recent years, which resulted from the large-scale reclamation of various kinds of wetlands.  相似文献   

14.
Timely and proper backfilling of open-pits in strip coal-mines has been an effective measurement for the recovery of the hydrothermal regimes and ecological environment in permafrost regions. In this study, numerical simulations and statistical regressions were applied for analyzing the recovery processes of the backfill and its major influencing factors for the thermal equilibrium in recently backfilled open pits at the Gulian strip coalmine in Mo'he, Northeast China. Results show that the thermal recovery time of backfilled areas is positively correlated to the backfill depth(BD) of the soils, the backfilled soil temperature(BST), and the mean annual ground surface temperature(MAGST); meanwhile, climate warming can impact on thermal regimes of the backfill area. The impact of climate warming on ground temperature of the backfill will show up significantly in about 50 years afterbackfilling(BD at 10.0 and 20.0 m, BST at 20.0°C) under the climate warming scenario(CWS) of 0.025°C·year ~(-1). Grey-relation analyses show that the sensitivity of the backfill recovery time declines in the order of the BD, BST and MAGST. On the basis of the abovementioned studies, the layer-by-layer backfilling in cold seasons is advised for more effective and more rapid recovery of thermal regimes of the backfilled open-pits in cold regions.  相似文献   

15.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

16.
The decomposition of plant litter is a key process in the flows of energy and nutrients in ecosystems. However, the response of litter decomposition to global climate warming in plateau wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yunnan Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate(K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C︰N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important functions in biogeochemical cycling in cold highland ecosystems.  相似文献   

17.
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.  相似文献   

18.
Before the end of the Ming Dynasty to the early of the Qing Dynasty, climate was warm, and heat energy was plentiful, so double-cropping of rice in Taihu Lake basin could grow without any protection. Later the global climate entered the Little Ice Age, the double-cropping of rice was extirpated nearly, grain output decreased heavily. After the Little Ice Age, although, the global climate got warm, sometimes, the thermal condition was enough for two crops no three crops one year throughout the period. So both the area and output of of double-cropping of rice was fluctuated with variation of cold/ warm. The condition of heat energy, with the movement of climatic zone, becomes a sensitive factor effecting grain production. Recently, as CO2concentra-tion in atmosphere is increasing, climate is getting warm. With the comprehensive effect of such warming and natural cooling trend, the climate in Taihu Lake basin shows the following trend: warm in winter, cooling in summer, decreasing of annual accumulated tem  相似文献   

19.
In arid regions, mountains fulfill important ecological and economic functions for the surrounding lowlands. In the scenario of global warming, mountain ecosystems change rapidly, especially in the arid region of northwestern China. This paper provides an assessment of the changes in temperature and precipitation in the historical records of climate on the northern slopes of the eastern Tianshan Mountains. A Mann-Kendall nonparametric trend and Sen's tests are employed to analyze the interannual changes and innerannual variability in temperature and precipitatiofi in the regions of low to high altitude. The present study finds that the largest increases in annual temperature are observed at stations in the low altitude regions. The significant increasing trends in temperature tend to occur mainly in late winter and early spring at stations from middle to high altitude, but in summer and autumn at stations of low altitudes. The increasing trends in annual precipitation are found from the middle to high altitude areas, but decreasing trends are found in the low altitude areas. The significant increasing trends in precipitation occur mostly in winter and earlier spring at stations from the middle to high altitudes, while the increasing and decreasing trend coexists at stations of low altitude with most of the significant trend changes occurring in March, June and August.  相似文献   

20.
全球变暖导致气象灾害频发,尤其是极端天气事件。极端温度对公共健康的影响已成为当今研究的热点问题之一。相比于发达国家,中国在该领域研究起步较晚。虽然已有出色的成果,但在以下3个方面还略显不足:① 大多数研究基于一个城市或几个城市,缺乏基于大量数据的区域尺度的研究;② 已有研究往往按地理因素或行政单位来划分区域,而忽视区域内部温度的异质性;③ 相比高温热浪,鲜少有研究关注低温冷害的影响。针对上述问题,本文收集了中国疾病预防控制中心2007-2012年全国127个站点的数据,利用分布式滞后非线性模型,探究了中国5个温度带温度与居民非意外死亡之间的暴露-反应曲线。在此基础上,定义当地温度分布1%处的温度为极端低温,根据温度-死亡风险曲线,计算了冷害造成的死亡风险。结果表明,不同温度带的温度-死亡关系曲线呈现U型或J型。极端低温对北亚热带影响最小,其相对风险为1.27(95%CI: 0.94-1.72);对中亚热带影响最大,其相对风险为1.93(95%CI: 1.08-3.60)。随着温度带温度的升高,低温冷效应的影响呈现“M”型,这一特征与不同温度带经济发展有关。因此,不同地区的政府除了应着力提高地区经济发展外,还应根据地区特征,采取更积极有效的措施来应对低温冷害可能给当地公共健康造成的威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号