首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甘肃肃南白泉门地区蛇绿混杂岩地质特征   总被引:5,自引:0,他引:5  
通过对甘肃肃南白泉门地区不同的构造岩块中的玄武岩,洼泥岩有砂岩的岩石学,地球化学及构造特征的综合研究,认为它们分别形式于洋脊,洋岛,岛弧,板内及活动大陆边缘等多种环境,各种环境的块体相线混杂并与蛇绿岩的基性一超基性岩岩块混杂产出,形成蛇绿混杂岩,该蛇绿混杂岩是北祁连中段加里东俯冲杂岩体的重要组成部分。  相似文献   

2.
Mineral assemblages within metabasites from the paratectonic Caledonides of Wales show that the grade of metamorphism was predominantly within the prehnite-pumpellyite facies, although green-schist fades assemblages occur in the more central parts of the region. General agreement with this pattern of metamorphism is seen in recent studies of illite crystallinity and conodont colour. Comparison with other regions suggests that all of the paratectonic Caledonides of the British Isles has suffered a low-grade of regional metamorphism during late Caledonian times.  相似文献   

3.
Evidence is presented here from the northern Scandinavian Caledonides for development of an extensional basin of Ashgill to Mid Llandovery age along the Baltoscandian margin immediately prior to Baltica–Laurentia collision. U/Pb multigrain and ion microprobe zircon dating of plagiogranites in the Halti Igneous Complex complement previous baddeleyite and zircon dating of a dolerite dyke, and zircon dating of anatectic granite; they demonstrate that this dunite, troctolite, gabbro, sheeted‐dyke complex ranges in age from c. 445 to 435 Ma. The dolerite dykes intruded and melted arkoses of inferred Neoproterozoic age. This evidence, taken together with previous documentation of ophiolites (Solund–Stavfjord), ophiolite‐like associations (Sulitjelma Igneous Complex) and several other mafic suites (e.g. Råna, Artfjället) of Ashgill to Llandovery age further south in the northern Scandinavian Caledonides, implies that Scandian collisional orogeny along this nearly 2000‐km‐long mountain belt was immediately preceeded by development of short‐lived marginal basins. The latter developed during the final closure of the Iapetus Ocean and are inferred to be of back‐arc origin, some (perhaps all) related to E‐dipping subduction. Collision of the continents at c. 435 Ma is inferred to have induced a flip in subduction polarity, leading to underthrusting of Laurentia by Baltica.  相似文献   

4.
Eclogite-grade metamorphism of the Seve Nappe Complex (SNC) in Norrbotten, Sweden, records the attempted subduction of the Baltic continental margin during the early Palaeozoic evolution of the Iapetus Ocean. Metamorphic titanite sampled from several calcsilicate gneisses of the SNC in Norrbotten occurs as part of a prograde, eclogite facies metamorphic mineral assemblage and yields concordant to nearly concordant U/Pb ages of 500–475  Ma. Later structural disruption of these rocks occurred during the Siluro-Devonian Scandian phase of the Caledonide orogeny, but the U/Pb systematics show no evidence of a second generation (metamorphic or recrystallized) of titanite, or of post-Early Ordovician disturbance through Pb loss. Hence the U/Pb ages are believed to record the time of prograde mineral growth during eclogite facies metamorphism of the SNC.
These results support earlier Sm/Nd and 40Ar/39Ar studies indicating an Early Ordovician metamorphic age for the eclogitic Norrbotten SNC, and confirm the Early Ordovician destruction of at least this segment of the Palaeozoic passive margin of Baltica. These results indicate that the SNC in the northern Scandinavian Caledonides was subducted and metamorphosed to high grade some 50–70  Myr prior to the high-grade metamorphism of the SNC in the central Scandinavian Caledonides. This result requires significantly different early Palaeozoic tectonic histories for rocks mapped as SNC in the northern Caledonides and those in the central Caledonides, despite a seemingly similar tectonostratigraphic position and broadly similar high-grade metamorphism.  相似文献   

5.
中国晚前寒武纪微古植物群及其地层意义   总被引:6,自引:0,他引:6  
<正> 黄汲清教授于1945年指出:“在湖北西南部和湖南西北部,有一个很宽广大致平行的褶皱带,在江南古陆加里东褶皱前面形成。……褶皱轴走向约为东北—西南,和其实际上相会合的加里东褶皱构造线平行。我们称这些褶皱为八面山弧”。 八面山弧形构造提出后,曾有不少人对它的形成进行了解释。 有人认为,八面山弧是由北东东和北北东两组褶皱联合而成的,是中生代时期发生的  相似文献   

6.
Pre-Caledonian basement is exposed in three areas within the Irish orthotectonic Caledonides: 1. In northwest County Mayo the Erris Complex comprises the Annagh Division, which is largely Grenvillian but includes older gneisses, and the Inishkea Division, which is probably equivalent to the older Moines of Scotland. 2. In the northeast Ox Mountains, Rosses Point and Lough Derg inliers there is a granulite fades, dominantly metasedimentary basement which is probably late Grenville in age. 3. Laxfordian and probably older gneisses are seen in the Inishtrahull Platform northeast of Malin Head, County Donegal. In addition, some gneisses within the belt of ‘Connemara migmatites’ in south Connemara may be fragments of allochthonous basement and some high grade metamorphic rocks in the Tyrone Central inlier have been referred to as pre-Caledonian basement, but there is at present no conclusive support for these suggestions. The Ox Mountains succession seen in the Clew Bay region and the southwest and central Ox Mountains is probably not pre-Caledonian basement. Basement in the paratectonic Caledonides is confined to the Cadomian and possibly pre-Cadomian Rosslare Complex (older than 625 Ma) and the nearby late Precambrian (to early Cambrian ?) Cuilenstown Formation in southeast County Wexford. In addition, an unseen block of basement defined by magnetics immediately to the north of the Dingle peninsula of County Kerry is probably of Rosslare Complex affinity. Granulite facies xenoiiths recovered from volcanic rocks of Carboniferous age about 70 km to the west of Dublin, indicate the character of basement there, though its age is not proven. All contacts between basement and Lower Palaeozoic Caledonian cover in the orthotectonic Caledonides are synmetamorphic slide zones and faults and in the paratectonic Caledonides the contacts are either faults, which are often rooted in older mylonites, or are unexposed and presumed to be major structural breaks.  相似文献   

7.
This article presents new geochronological and isotope-geochemical data on ultramafic–mafic rocks of the banded complex of the Dzhida zone of the Caledonides ophiolite association.  相似文献   

8.
Mantle fragments of ultramafic composition are widespread in the Scandinavian Caledonides (SC). Lenses and boudins of Alpine-type peridotites in the Scandinavian Caledonides represent parts of dismembered ophiolite sequences and fragments of sub-continental upper mantle. Metaperidotites of nappes in internal positions are generally isofacial with the metamorphic envelope, usually Caledonian metasediments but in places also Precambrian metagranitoids forming the basement cores of the nappes. Caledonian metamorphism strongly modified the texture and mineralogy of the peridotites and resulted in a systematic metamorphic pattern which is consistent with the pattern observed in the envelope.

Metaperidotites of the external massifs display at least a two-stage metamorphic history: an early Caledonian high-pressure high-temperature phase related to early crustal stacking and a late Caledonian regional metamorphic overprint which produced a regular Barrovian-type metamorphic pattern of in-situ metamorphism.

Metaperidotites from nappes in intermediate positions (Iapetus Ocean ophiolites and ultramafic rocks from island arc environments) show strongly diverging histories. Metaperidotites from internal ophiolites (oceanic ophiolites, Köli) lack any evidence of subduction metamorphism, are serpentinized to various degrees, show abundant primary mantle relic mineralogies and the Caledonian metamorphic overprint is low. Metaperidotites from external (island arc) ophiolites and other associations (Seve) often show relic high-pressure metamorphism related to the Finnmarkian phase of the Caledonian orogeny. The Seve metaperidotites are occasionally associated with eclogites and show a weak overprint of late Caledonian regional metamorphism. Alpine-type peridotites are absent in the foreland of the Baltic Shield and in the innermost nappes (Lofoten).

The metamorphic characteristics and evolution recorded by the metaperidotites in the Scandinavian Caledonides allow a general reconstruction of the dynamics of collision belt formation.  相似文献   


9.
The Scandinavian Caledonides represent a classical example of a deeply eroded Himalayan‐style orogen formed during Baltica–Laurentia continent collision. We propose that initial contact along continental‐margin promontories led to a drop in convergence rate, resulting in increased slab rollback along parts of the margin still undergoing oceanic subduction. Slab rollback caused extension of the overlying lithosphere with orogen‐wide emplacement of mafic layered intrusions, ophiolite formation and bimodal magmatism at 438–434 Ma, in what immediately thereafter became the upper plate (Laurentia) in the Scandian continent–continent collision. A compilation of magmatic ages provides evidence of long‐lived, Ordovician arc magmatism in units above the suture, which is essentially absent below the suture. This model provides a tight constraint on the timing of collision initiation, and provides a framework by which tectonic units comprising the Scandinavian Caledonides can be assigned a Baltican or more exotic heritage.  相似文献   

10.
Nappe displacement in the Scandinavian Caledonides   总被引:1,自引:0,他引:1  
Large areas of the Scandinavian Caledonides are eroded to the level of the basement/cover contact. Relationships between the Precambrian crystalline basement (largely Svecofennian-Dalslandian, 1800-1000 m.y.) and cover sequences are exposed both in transverse profiles through the mountain belt and along the belt in the various windows. These relationships provide an unique opportunity for studying the basement configuration, character of basement involvement and general nappe geometry. Major allochthonous units of the central part of the Scandinavian Caledonides — the Offerdal, Särv and Seve-Köli Nappe Complex — have been shown to wedge out westwards, having been displaced eastwards from environments along and west of the present Norwegian coast. Recent investigations have shown that these units (the Offerdal, Särv and Seve) reappear in western Norway as major pinch-and-swell structures, the lenses reaching thicknesses in the order of 2 km and with long axes of several tens of kilometres. Within the western parts of the Swedish Caledonides the thicker parts of the lenses approximately coincide with the axes of the late synforms which fold basement and cover together. Further west, in Norway, the tensing appears to be unrelated to the geometry of these major folds.This evidence increases estimates of nappe displacement distance (now thought to be in the order of at least 1000 km). At the same time it emphasizes that translation may account for only about half of this amount, the rest being achieved by stretching of the nappes. Apparently, a nappe sequence built up in the west which subsequently collapsed, leading to continued displacement eastwards on to the Baltoscandian Platform. Whereas basement shortening is of the order of several tens to perhaps hundreds of kilometres in the western part of the central Scandes, it is of lesser importance from central Trøndelag eastwards, a distance of about two hundred kilometres, to the Caledonian Front.Biostratigraphic evidence from the late-orogenic intramontane basins, taken in relation to the youngest units involved in the nappes, requires nappe translation into western Norway to have occurred after the Llandoverian (Köli Supergroup) and prior to the (Ludlovian?) Downtonian (Hitra Formation) deposition in the intramontane basins. The nappes contain sequences derived from a variety of probable oceanic and continental margin environments, and this translation may greatly exceed the minimum estimate of five hundred kilometres. Further displacement eastwards occurred during uplift of seaboard Norway and accompanied sedimentation both in the intra- and extramontane basins. The latter were not finally influenced by the décollement tectonics until after the Early Devonian.This evidence suggests that a compressive regime dominated the early phases of orogenesis during basement shortening, build up of the nappe pile and translation of these denser units on to the western margin of the Baltoscandian Platform. This compression subsequently gave way to a gravity regime, collapse and stretching of the nappes dominating the late phases of displacement on to the Baltoscandian Platform.  相似文献   

11.
Book reviews     
《Sedimentology》1981,28(2):291-296
Book Review in This Article.
The North-West European Shelf Seas: the Sea-Bed and the Sea in Motion. I. Geology and Sedimentology , Ed. by F. T. Banner, M. B. Collins and K. S. Massie.
A Dynamic Stratigraphy of the British Isles, a Study of Crustal Evolution, by R. Anderton, P. H. Bridges, M. R. Leeder and B. W. Selwood.
The Caledonides of the British Isles—Reviewed , ed. by A. L. Harris, C. H. Holland and B. E. Leake.
The Caledonides in the U.S.A. , ed. by D. R. Wones.
Magnetic Stratigraphy of Sediments , Benchmark Papers in Geology, 54, Ed. by James P. Kennett.
Hypersaline Brines and Evaporitic Environments , Developments in Sedimentology, 28, Ed. by A. Nissenbaum.  相似文献   

12.
The western Ireland Ordovician stratigraphy has been previously used to constrain the timing of docking of an island arc and its fore‐arc basin with the margin of Laurentia for the British and Irish Caledonides. New field relationships and age data indicate that one of the key formations, the Rosroe Formation (459.2 ± 0.8 and 465.1 ± 2.1 Ma), and its supposed lateral equivalent, the Maumtrasna Formation are younger than previously interpreted. New age data for a tuff band in the Maumtrasna Formation (468.9 ± 1.3 Ma) also support previous studies showing it can be correlated to the adjacent Mweelrea Formation. The new field evidence, age data and geochemistry contradict some previous studies and show that the Maumtrasna, Rosroe and Derrylea formations can no longer be considered lateral equivalents. Based on the new stratigraphy a revised tectonic model is required with sedimentation in this part of the Caledonides taking place in a fore‐arc basin outboard of a continental arc and the oceanic arc was an along‐strike equivalent of this arc situated in an embayment of the Laurentian margin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484–464 Ma peri-Laurentian affinity arc–ophiolite complex and a possible broad correlative of the Buchans-Robert’s Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite–carbonate–pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units are petrochemically favorable for Kuroko-type VMS mineralization in bimodal-felsic evolved arc terranes. The scarcity of discovered peri-Laurentian VMS mineralization in the British and Irish Caledonides is due to a combination of minimal exploration, poor-preservation of upper ophiolite sequences, and limited rifting in the Lough Nafooey arc of western Ireland. The geological and geochemical characteristics of the Tyrone Volcanic Group of Northern Ireland and peri-Gondwanan affinity arc/backarc sequences of Ireland and northwest Wales represent the most prospective sequences in the British and Irish Caledonides for VMS mineralization.  相似文献   

14.
According to this paper, the juvenile crust of the Chingiz Range Caledonides (Eastern Kazakhstan) was formed due to suprasubduction magmatism within the Early Paleozoic island arcs developed on the oceanic crust during the Cambrian–Early Ordovician and on the transitional crust during the Middle–Late Ordovician, as well as to the attachment to the arcs of accretionary complexes composed of various oceanic structures. Nd isotopic compositions of the rocks in all island-arc complexes are very similar and primitive (εNd(t) from +4.0 to +7.0) and point to a short crustal prehistory. Further increase in the mass and thickness of the crust of the Chingiz Range Caledonides was mainly due to reworking of island-arc complexes in the basement of the Middle and Late Paleozoic volcanoplutonic belts expressed by the emplacement of abundant granitoids. All Middle and Late Paleozoic granitoids have high positive values of εNd(t) (at least +4), which are slightly different from Nd isotopic compositions of the rocks in the Lower Paleozoic island-arc complexes. Granitoids are characterized by uniform Nd isotopic compositions (<2–3 ε units for granites with a similar age), and thus we can consider the Chingiz Range as the region of the Caledonian isotope province with an isotopically uniform structure of the continental crust.  相似文献   

15.
北秦岭天水东部地区地壳构造演化探讨   总被引:1,自引:0,他引:1  
温志亮 《甘肃地质》1996,5(2):57-64
从构造体制的转化出发探讨了处于北秦岭加里东造山带的天水东部地区地壳构造演化史。研究区地壳构造演化大致经历了8个大的构造旋回、7次构造体制的转变和15个世代的构造演化变形序列  相似文献   

16.
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.  相似文献   

17.
The Scandinavian Caledonides: a complexity of collisions   总被引:1,自引:0,他引:1  
Thrust sheets dominate the structural framework of the Scandinavian Caledonides. Sheets at lower tectonostratigraphic levels comprise the shortened margin of the continent Baltica and, at higher levels, terranes derived outboard from this continent in oceanic or foreign continental environments. Amalgamation of these terranes with the margin of Baltica occurred during closure of the Iapetus Ocean in the early Palaeozoic. Closure involved subduction of oceanic crust, extensional tectonics and continent-arc collisions during the late Cambrian and early Ordovician, and ultimate continent-continent collision during the Silurian and Devonian.  相似文献   

18.
北极地区地质构造及主要构造事件   总被引:1,自引:0,他引:1  
北极地区范围很广,北极圈面积达2 100×104 km2,区域地质复杂。通过对北极地区区域地质编图,笔者认为前寒武纪主要由波罗的、劳伦和西伯利亚三大克拉通,以及其间的微板块或地块组成。主要造山带包括新元古代-早寒武世的贝加尔造山带、晚志留世-早石炭世的加里东造山带、晚古生代-早中生代的海西造山带、晚中生代的上扬斯克造山带、新西伯利亚造山带与楚科奇-布鲁克斯造山带。根据北极地区区域地质构造特征,显生宙以来经历的构造事件大致包括:新元古代-早寒武世的贝加尔运动,致使波罗的古陆与斯瓦尔巴-喀拉地块碰撞造山;晚泥盆世-早石炭世的加里东运动,在劳伦古陆周边形成规模巨大的加里东造山带;晚古生代的海西运动,波罗的古陆与西伯利亚古陆的碰撞造山形成海西造山带;北极阿拉斯加-楚科奇微板块裂离加拿大边缘,侏罗纪加拿大海盆开始张开;早白垩世,阿拉斯加-楚科奇微板块继续与西伯利亚碰撞,阿纽伊洋(Anyui Ocean)消亡,形成上扬斯克-布鲁克斯造山带。受北极调查程度影响,许多问题有待进一步研究。  相似文献   

19.
Ordovician faunal data from the Scandinavian Caledonides is tested with new geochemical information from zircons to give U/Pb ages and source origins of volcanic arc and ophiolite sequences. Early Ordovician (Arenig-Llanvirn), low latitude, Toquima-Table Head faunas from the upper Upper Allochthon are associated with an island arc system formed adjacent to Laurentia. Contemporaneous mafic magmas were contaminated by crustal material during subduction and associated granites contain inherited zircons of Archaean age. The nearest source for such rocks is on the Laurentian rather than the Baltic side. Higher latitude Celtic province faunas from the upper Upper Allochthon are from one insular site accessible to forms from both Laurentia and Baltica.
The late Ordovician low-latitude Holorhynchus and subtropical Hirnantia faunas occur in overstep sequences above deeply eroded early Ordovician arc complexes. The transgression appears to be coeval with a second generation of spreading-related complexes. Single detrital zircons from sediments show sources from Archaean, Proterozoic and early Ordovician terranes. This suggests that deposition was in a basin situated along the same continental margin (Laurentia) to which the early Ordovician ophiolite/arc sequences had already become accreted. The late Ordovician faunas link both Laurentia and Baltica at a time of narrowing of lapetus.
The new geochemical data together with the faunal information is supported by recent palaeomagnetic studies.  相似文献   

20.
The Leka Ophiolite Complex (LOC) is located on the island of Leka, Norway, and belongs to the Uppermost Allochthon of the Scandinavian Caledonides. The rocks of the adjacent mainland and most of the surrounding islands are basement gneisses and supracrustal rocks not related to the ophiolite complex. Paleostress analysis, gravity inversion, and regional geology support a fault-bounded rhombochasm geometry for the LOC. The paleostress inversions revealed two types of tensors, interpreted as small strains: (1) horizontal extension, generally E–W to NE–SW, and (2) horizontal extension in the same direction with an added component of perpendicular horizontal contraction. A strong positive gravity anomaly (25 mGal) is centered on Leka, and gravity inversion indicates that the LOC lies directly below its surface exposures with steep-sided walls and a flat bottom located at 7 km depth. The faults bounding the LOC probably initiated during postorogenic extension in the Scandinavian Caledonides. The faults are regional in scale and are parallel to other NE–SW trending en echelon faults along the Norwegian coastline and on the adjacent mainland.A pull-apart structure explains the down-dropping and subsequent preservation of the LOC, as it is surrounded by rocks from lower structural positions within the nappe stack. The paleostress directions from Leka support a sinistral component of shear along these faults. The gravity inversion is consistent with a fault-bounded geometry. This pull-apart structure, as uniquely recorded by the dense ophiolitic rocks, suggests that strike-slip partitioning was active in an obliquely divergent setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号