首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Late Devonian (Famennian) marine successions globally are typified by organic-rich black shales deposited in anoxic and euxinic waters and the cessation of shelf carbonate sedimentation. This global ‘carbonate crisis’, known as the Hangenberg Event, coincides with a major extinction of reef-building metazoans and perturbations to the global carbon cycle, evidenced by positive carbon-isotope excursions of up to 4‰. It has been suggested that authigenic carbonate, formed as cements in sedimentary pore spaces during early burial diagenesis, is a significant mass fraction of the total global carbon burial flux, particularly during periods of low oxygen concentration. Because some authigenic carbonate could have originated from remineralization of organic carbon in sediments, it is possible for this reservoir to be isotopically depleted and thereby drive changes in the carbon isotopic composition of seawater. This study presents bulk isotopic and elemental analyses from fine-grained siliciclastics of the Late Devonian–Early Mississippian Bakken Formation (Williston Basin, USA) to assess the volume and isotopic composition of carbonates in these sediments. Carbonate in the Bakken black shales occurs primarily as microscopic disseminated dolomite rhombs and calcite cements that, together, comprise a significant mass-fraction (ca 9%). The elemental composition of the shales is indicative of a dynamic anoxic to sulphidic palaeoenvironment, likely supported by a fluctuating chemocline. Despite forming in an environment favourable to remineralization of organic matter and the precipitation of isotopically depleted authigenic carbonates, the majority of carbon isotope measurements of disseminated carbonate fall between −3‰ and +3‰, with systematically more depleted carbonates in the deeper-water portions of the basin. Thus, although there is evidence for a significant total mass-fraction of carbonate with contribution from remineralized organic matter, Bakken authigenic carbonates suggest that Famennian black shales are unlikely to be sufficiently 13C-depleted relative to water column dissolved inorganic carbon to serve as a major lever on seawater isotopic composition.  相似文献   

2.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

3.
Organic carbon isotope composition was studied in the sedimentary cover of the southern Siberian Platform and its surrounding fold systems. The rocks experienced catagenesis, metamorphism, and metasomatism. The chloroform bitumoid (CB) has a stable carbon isotope composition within a wide range of postsedimentation transformations. The average values of δ13C in CB of the sedimentary cover are ?29.5‰. Metamorphism and, especially, ore metasomatism, at the Sukhoi Log deposit caused a 2‰ increase in the heavy carbon isotope concentration of CB as compared to that of the platform deposits. The narrow variations in carbon isotope composition of the bitumoid are defined by their derivation from lipids, whose components are almost insusceptible to changes in the PT conditions. Kerogen from platform deposits is more strongly depleted than CB in the heavy carbon isotope (δ13Cav ? 32.2‰). The insoluble carbonaceous matter (ICM) of the metamorphic shales is significantly enriched in the heavy carbon isotope (δ13Cav ? 21.9‰). The highest changes in carbon isotope composition were found in concentrates of ICM from metasomatically altered rocks of the Sukhoi Log deposit (δ13Cav ? 17.5‰). The heavier carbon isotope composition caused by metamorphism and metasomatism is evidently defined by isotopic exchange between the carbonate carbon and CO2 of metasomatic solutions, on one hand, and ICM of shales, on the other.  相似文献   

4.
The paleohydrological and sedimentological characteristics of a playa lake in northern Kuwait (Arabian Gulf) are reconstructed using sedimentological, geochemical, and isotopic techniques. The sequence consists of up to 8 cycles of S-poor, alluvial sediments capped by a thin organic soil interbedded with gravity-fall calcrete sediments. The succession is locally derived from mainly Quaternary sediments and is regressive with upsection filling of the subsiding basin by cycles of sheetwash flow in response to climatic change. There is no natural, open-water lake water as indicated by low total organic carbon (TOC) data, but the presence of incised calcrete yardangs suggests that more extensive open-water conditions were operative in the past. Stable isotope (δ18O‰ and δ13C‰) values of the authigenic carbonates indicate the following three distinct processes: evaporation, meteoric fluid infiltration, and rapid per-descensum flow (rapid downward movement of water and playa sediment through pipes) through a porous, clastic sequence. Because evaporites are scarce, other factors besides evaporation action control chemical and isotopic compositions of the per-decensum lake fluids. Consequently, the isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge may explain the enriched carbon isotope values for the authigenic carbonates precipitated in the sediments. Hydrologically closed lake water bodies tend to show low negative carbonate oxygen and carbon isotopic signatures. Isotopically negative δ13C values imply a strong input of soil-zone carbon to the groundwater of the top 60 cm of the sediment. Lakes that are hydrologically closed and evaporate or equilibrate with atmospheric CO2 will tend to have low negative δ18O and δ13C values in the carbonates as reported by Talbot (Chem Geol: Isotope Geosci Sect 80(4):261–279, 1990). Biologically active lakes will tend toward lower δ13C of dissolved carbon due to the photosynthetic effects of 12C withdrawal as reported by Dunagan and Driese (J Sed Res 69:772–783, 1999). Increased biological activity during sedimentation may account for low carbon isotope values where plants were abundant, but in shrinkage-dominated systems (those of clay-rich soil subjecting to wet-dry conditions), carbon isotopes will be largely inherited from the calcretic limestones in the land extending landward of the coast and not influenced by coastal processes (known as hinterland), such as Umm Ar-Rimam depression. This basin does not fit the classic shallow playa-type basins of the Arabian Peninsula but rather the recharge playas of the southwestern USA.  相似文献   

5.
The Precipitation of carbonate cements in the Pobitite Kamani area (Lower Eocene) began during early diagenesis of sediments. There is evidence, however, that calcite is still forming today.The negative 13C values to –29.2 suggest that the carbonate formed during degradation of 12C-enriched organic matter (perhaps partly from oxidation of methane). The 18O values of –0.9 to –1.6 reflect the marine origin of the early diagenetic carbonate cements. Most of the carbonates, however, formed during late diagenesis (at approximately 1300 m burial depth) and/or recently (after uplift) from percolating groundwaters. These carbonates have an isotopic composition characteristic of carbonates which precipitated from meteoric waters under normal sedimentary temperatures in isotopic equilibrium with 12C-enriched soil carbon dioxide.  相似文献   

6.
This paper carried out mineral and geochemical studies on a profile through a diagenetic methane-derived authigenic carbonate sample that was collected from southwestern Dongsha area of the northern South China Sea. Five samples locating in the cross-sectional middle mainly consist of dolomite and quartz, and two samples close to the surface have a small amount of Mg-calcite. The δ13C values of the samples vary between ?30.59 and ?0.30 % VPDB, with δ18O values ranging from 3.07 to 3.59 % VPDB, δ44/40Ca values ranging from 1.35 to 1.47 % SRM915a, indicating a contribution of methane to the carbon pool where the precipitation of authigenic carbonates occurred. Based on the isotope values alone, it can not be distinguished if the carbon source is thermogenic gas or a mixture of biogenic methane and marine dissolved inorganic carbon. The δ18O values are in general consistent with dolomite precipitation from a fluid similar to present seawater. The observed small variation might be related to the oxygen isotope composition of seep fluid. The relative small range in calcium isotope values suggests that relatively constant growth conditions and precipitation from seawater. The central part of the carbonate nodule formed under the strong influence of methane seepage, and the external part is less influenced by methane, either due to reduced methane flux to the surface or caused by erosional exhumation of the carbonate nodule from greater depth to the sediment surface.  相似文献   

7.
Isotope-geochemical features of the formation of carbon and oxygen isotopic compositions in sedimentary and diagenetic carbonates are considered. Isotopic criteria for the identification of early diagenesis zone are proposed. The transition from sedimentogenesis to diagenesis (upper boundary of the early diagenesis zone) is accompanied by the alteration of carbon isotopic composition in the HCO 3(hydrosphere)–HCO 3(pore water of sediment)system. The lower boundary of early diagenesis zone is registered by the alteration of oxygen isotopic composition in the pore water of sediments and authigenic carbonates.  相似文献   

8.
Carbon isotope measurements carried out on 67 dolomite samples from the Middle Precambrian Lomagundi Group (Rhodesia) have yielded a δ13C mean of +8.2 ± 2.6%. vs PDB. With the outcrop of these dolomites extending over a distance of almost 300 km, the Lomagundi dolomite faces is likely to represent the largest isotopically anomalous sedimentary carbonate province ever recorded. It is concluded that the anomalous carbonates formed in a closed basin whose δ13C level had been substantially increased as a result of a preferential removal (within sedimentary organics) of the light carbon isotope.  相似文献   

9.
This article reviews the applications of light stable isotope, including carbon, oxygen and hydrogen, in thestudies on origin and formation temperature of authigenic carbonate, quartz and clay minerals. Theoretical knowledge andanalytical methods for major light stable isotopes are introduced in detail. Negative and positive δ13C values indicatesignificant differences on the origin of carbonate cements. The δ18O value is an effective palaeotemperature scale forauthigenic minerals formation. Various fractionation equations between δ18O and temperature are proposed for carbonatecements, quartz cements and clay minerals, whose merit and demerit, applicable conditions are clarified clearly. Clumpedisotope analysis can reconstruct the temperature of carbonate precipitation with no requirement on the δ18O of initial waters,which makes temperature calculation of carbonate cements formation more convenient and accurate. Hydrogen and oxygenisotopes mainly reflect the origin of diagenetic fluid for clay mineral formation, providing reliable evidence for diageneticenvironment analysis. This work aims at helping researchers for better understanding the applications of light stable isotopein sandstone diagenesis.  相似文献   

10.
The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ13C values ranging from +27 to +64. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.  相似文献   

11.
A total of 280 brachiopods of Ordovician to Cretaceous age, complemented by published data from belemnites and planktonic foraminifera, are used to reconstruct the evolution of calcium isotope composition of seawater (δ44/40CaSW) over the Phanerozoic. The compiled δ44/40CaSW record shows a general increase from ∼1.3‰ (NIST SRM 915a) at the beginning of the Ordovician to ∼2‰ at present. Superimposed on this trend is a major long-term positive excursion from the Early Carboniferous to Early Permian as well as several short-term, mostly negative, oscillations.A numerical model of the global cycles of calcium, carbon, magnesium and strontium was used to estimate whether the recorded δ44/40CaSW variations can be explained by varying magnitudes of input and output fluxes of calcium to the oceans. The model uses the record of marine 87Sr/86Sr ratios as proxy for seafloor spreading rates, a record of oceanic Mg/Ca ratios to estimate rates of dolomite formation, and reconstructed atmospheric CO2, discharge and erosion rates to estimate continental weathering fluxes.The model results indicate that varying magnitudes of the calcium input and output fluxes cannot explain the observed δ44/40CaSW trends, suggesting that the isotope signatures of these fluxes must also have changed. As a possible mechanism we suggest variable isotope fractionation in the sedimentary output flux controlled by the dominant mineralogy in marine carbonate deposits, i.e. the oscillating ‘calcite-aragonite seas’. The ultimate control of the calcium isotope budget of the Phanerozoic oceans appears to have been tectonic processes, specifically variable rates of oceanic crust production that modulated the hydrothermal calcium flux and the oceanic Mg/Ca ratio, which in turn controlled the dominant mineralogy of marine carbonates, hence the δ44/40CaSW. As to the causes of the short-term oscillations recorded in the secular δ44/40CaSW trend, we tentatively propose that these are related to variable rates of dolomite formation and/or to changing chemical composition of the riverine flux, in particular and ratios, induced by variable proportions of silicate vs. carbonate weathering rates on the continents.  相似文献   

12.
Oil seeps from the southern Gulf of Mexico can be regarded as natural laboratories where the effect of crude oil seepage on chemosynthesis‐based communities and carbonate precipitation can be studied. During R/V Meteor cruise 114 the seep sites UNAM (Universidad Nacional Autónoma de México) Ridge, Mictlan Knoll and Tsanyao Yang Knoll (Bay of Campeche, southern Gulf of Mexico) were investigated and sampled for authigenic carbonate deposits containing large amounts of liquid oil and solid asphalt. The δ13C values of individual carbonate phases including: (i) microcrystalline matrix aragonite and calcite; (ii) grey, cryptocrystalline to microcrystalline aragonite; and (iii) clear, fibrous aragonite cement, are between ?30‰ and ?20‰, agreeing with oil as the primary carbon source. Raman spectra reveal that residual heavy oils from all sites are immature and most likely originate from the same reservoir. Geochemical batch modelling using the software code PHREEQC demonstrates how sulphate‐driven oxidation of oil‐derived low‐molecular to high‐molecular weight hydrocarbons affects carbonate saturation state, and shows that the oxidation state of carbon in hydrocarbon compounds and oxidation rates of hydrocarbons control carbonate saturation and precipitation at oil seeps. Phase‐specific trace and rare earth element contents of microcrystalline aragonite and calcite, grey cryptocrystalline aragonite and clear aragonite were determined, revealing enrichment in light rare earth elements for grey aragonite. By comparing trace element patterns of carbonates with those of associated oils, it becomes apparent that liquid hydrocarbons constitute an additional source of trace metals to sedimentary pore waters. This work not only demonstrates that the microbial degradation of oil at seeps may result in the precipitation of carbonate minerals, it also elucidates that trace metal inventories of seep carbonates archive diagnostic elemental patterns, which can be assigned to the presence of heavy hydrocarbons in interstitial pore waters.  相似文献   

13.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

14.
冷泉流体沉积碳酸盐岩的地质地球化学特征   总被引:39,自引:3,他引:36  
冷泉流体是指来自海底沉积界面之下的低温流体以喷涌和渗漏方式注入盆地, 并产生系列的物理和化学及生物作用, 这种作用及产物称为冷泉?它是继洋中脊以盆下源中高温流体的热泉被发现和研究之后的又一个新的盆地流体沉积领域?日前研究较多的是以水? 碳氢化合物 (天然气和石油) ? 硫化氢? 细粒沉积物为主要成分, 温度与海水相近的流体, 广泛发育于活动和被动大陆边缘斜坡海底?冷泉流体沉积体系发育高密度的化学自养生物群, 以碳酸盐岩和天然气水合物为主, 有少量的硫化物和硫酸盐等?冷泉碳酸盐岩的产状有丘? 结核? 硬底? 烟囱? 胶结物和小脉等, 以化学自养生物碎屑和多期次的自生碳酸盐胶结物组成的生物丘最为常见, 它在物质来源? 形成环境? 形成作用等方面与传统来源于海水碳的碳酸盐岩建隆不同, 用术语 C h e r m o h e r m 表示, 以区别于传统海水碳酸盐岩建隆术语b i o h e r m s ? l i t h o h e r m s ? p s e u d o b i o h e r m s 和 b i o s t r o m e s ?地层中石化的化学自养生物丘常是含有大量底栖生物化石的碳酸盐岩建隆产于深水相沉积地层中, 在沉积环境和相分析上出现纵向和横向的不连续, 甚至出现反常现象?矿物以镁方解石? 白云石和文石为主, 与传统的碳酸盐岩相似, 在地球化学组成上最大的区别是冷泉流体沉积碳酸盐岩的碳来源于冷泉体系中的细菌生物成因碳, 具有特别负的碳同位素值?冷泉在海底主要沿构造带和高渗透地层呈线性群, 或围绕泥火山或盐底劈顶部呈圆形或不规则状冷泉群分布,或以海底地形低凹处和峡谷转向处呈孤立冷泉形式产出?冷泉流体以沉积建造流体为主?上覆快速堆积? 成岩压实和胶结作用? 构造挤压和变形作用? 深部的后生作用和成岩作用? 海底沉积物中的天然气水合物分解作用是建造流体向上运移进入海底成为冷泉的驱动力?冷泉碳酸盐岩的沉积作用主要有胶结作用? 充填作用和生物化学沉积作用?冷泉流体中的碳主要是以甲烷为主的碳氢化合物形式存在, 经微生物作用转变为 C O2 ,最终形成冷泉碳酸盐岩?  相似文献   

15.
The well-preserved Mesoproterozoic succession in the North China platform consists mainly of three llthological associations including peritidal quartz sandstone, shallow marine and lagoonai dark to black shales, and shallow epeiric carbonates, with a total thickness of up to 8 000 m. In addition to well-documented microplants, macroalgae, and microbial buildups, abundant microbially induced sedimentary structures (MISS) and mat-related sediments have been recognized in these rocks. Intensive microbial mat layers and MISS are especially well preserved in the carbonates of the upper Gaoyuzhuang (高于庄) (ca. 1.5 Ga) and lower Wumishan (雾迷山) (ca. 1.45 Ga) formations, Indicating diversified microbial activities and a high organic production. In these petrified blomats, putative microbial fossils (both coccoidal and filamentous) and framboidal pyrites have been identified. The abundance of authigenic carbonate minerals in the host rocks, such as, acicular aragnnites, rosette barites, radial siderites, ankerites, and botryoidai carbonate cements, suggests authigenlc carbonate precipitation from anaerobic oxidation of methane (AOM) under anoxic/euxinic conditions. Warm climate and anoxic/euxinic conditions in the Mesoproterozoic oceans may have facilitated high microbial productivity and organic burial in sediments. Although authigenic carbonate cements may record carbonate precipitation from anaerobic methane oxidation, gas blister (or dome) structures may indicate gas release from active methanogenesls during shallow burial Bituminous fragments in mat-related carbonates also provide evidence for hydrocarbon generation. Under proper conditions, the Mesoproterozoic mat-rich carbonates will have the potential for hydrocarbon generation and serve as source rocks. On the basis of petrified biomats, a rough estimation suggests that the Mesoproterozoic carbonates of the North China platform might have a hydrocarbon production potential in theorder of 10×108t.  相似文献   

16.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

17.
A combined Sr, O and C isotope study has been carried out in the Pucará basin, central Peru, to compare local isotopic trends of the San Vicente and Shalipayco Zn-Pb Mississippi Valley-type (MVT) deposits with regional geochemical patterns of the sedimentary host basin. Gypsum, limestone and regional replacement dolomite yield 87Sr/86Sr ratios that fall within or slightly below the published range of seawater 87Sr/86Sr values for the Lower Jurassic and the Upper Triassic. Our data indicate that the Sr isotopic composition of seawater between the Hettangian and the Toarcian may extend to lower 87Sr/86Sr ratios than previously published values. An 87Sr-enrichment is noted in (1) carbonate rocks from the lowermost part of the Pucará basin, and (2) different carbonate generations at the MVT deposits. This indicates that host rocks at MVT deposits and in the lower-most part of the carbonate sequence interacted with 87Srenriched fluids. The fluids acquired their radiogenic nature by interaction with lithologies underlying the carbonate rocks of the Pucará basin. The San Ramón granite, similar Permo-Triassic intrusions and their clastic derivatives in the Mitu Group are likely sources of radiogenic 87Sr. The Brazilian shield and its erosion products are an additional potential source of radiogenic 87Sr. Volcanic rocks of the Mitu Group are not a significant source for radiogenic 87Sr; however, molasse-type sedimentary rocks and volcaniclastic rocks cannot be ruled out as a possible source of radiogenic 87Sr. The marked enrichment in 87Sr of carbonates toward the lower part of the Pucará Group is accompanied by only a slight decrease in 18O values and essentially no change in 13C values, whereas replacement dolomite and sparry carbonates at the MVT deposits display a coherent trend of progressive 87Sr-enrichment, and 18O- and 13C-depletion. The depletion in 18O in carbonates from the MVT deposits are likely related to a temperature increase, possibly coupled with a 18O-enrichment of the ore-forming fluids. Progressively lower 13C values throughout the paragenetic sequence at the MVT deposits are interpreted as a gradually more important contribution from organically derived carbon. Quantitative calculations show that a single fluid-rock interaction model satisfactorily reproduces the marked 87Sr-enrichment and the slight decrease in 18O values in carbonate rocks from the lower part of the Pucará Group. By contrast, the isotopic covariation trends of the MVT deposits are better reproduced by a model combining fluid mixing and fluid-rock interaction. The modelled ore-bearing fluids have a range of compositions between a hot, saline, radiogenic brine that had interacted with lithologies underlying the Pucará sequence and cooler, dilute brines possibly representing local fluids within the Pucará sequence. The composition of the local fluids varies according to the nature of the lithologies present in the neighborhood of the different MVT deposits. The proportion of the radiogenic fluid in the modelled fluid mixtures interacting with the carbonate host rocks at the MVT deposits decreases as one moves up in the stratigraphic sequence of the Pucará Group.  相似文献   

18.
The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 3‰ relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.3‰. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens’ δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope ‘vital effects’ in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation.  相似文献   

19.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

20.
The composition of the carbon and oxygen isotopes has been determined in about 40 carbonate concretions and surrounding clays and shales of different geological ages. Two different areas and stratigraphic levels in Northwestern Germany have been sampled: 1. concretions in shales of Lower Cretaceous age fromt he area between Hildesheim and Hannover; 2. concretions in shales of Devonian age from the Harz mountains (and the foreland).While the concretions of Group 1 generally are enriched in the light isotope 12C (13C values from –3.3 to –43.2 relative to PDB), compared to the surrounding shales (0.9 to –5.3), no significant differences could be observed between concretions and shales of Group 2 (concretions: 2.0 to –7.0; shales: –0.3 to –6.2).The average 18O/16O ratios of the Devonian samples are lower than those from the Cretaceous, because the probability of an exchange with light meteoric water in diagenetic reactions increases with geologic age.Formed under special conditions of the microenvironment, such as the presence of organic material and local alkalinity during the early stages of diagenesis, the carbon isotopic composition of concretions will probably have preserved some characteristic properties of this mioroenvironment.It is assumed that concretions with the heavy carbon contain carbon from CO2 which was in isotope equilibrium with CH4, both of them liberated during the decay of organic material. The light carbon from concretions of Group 1 is explained as fixed CO2, originating from microbiological or inorganic oxidation of organic substances, which was not in isotope equilibrium with methane (if this was present at all).After precipitation of the concretionary carbonates, no significant carbon isotope exchange seems to have occurred, otherwise the pattern of a heterogeneous carbon isotope composition found in several concretions could not be explained.Strontium concentrations (see Appendix) range from those of primary calcite precipitated in sea water to diagenetic carbonates formed from solutions with a high Ca/Sr ratio. They indicate that during the formation of concretions in abundant cases the system was closed to ocean water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号