首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative analysis of two sediment cores from perialpine lakes (L. Zürich and L. Geneva) helped to clarify pathways of sulphur fixation in freshwater sediments. Despite greater than three-fold differences in lake water sulphate concentration equal amounts of sulphur are fixed in the sediments. The maximum sedimentary sulphur concentrations attain 1% (dry weight) which is similar to the sulphur content of modem, near-shore marine sediments. This is also expressed in low C org/Stot ratios which range from 2.5–8.
An analysis of the sulphur pools showed that organic sulphur compounds are the main components of the sedimentary sulphur, accounting for ˜ 80% and ˜ 60% of the total sulphur in Lakes Zürich and Geneva, respectively. The largest single sulphur pool is the sulphate-esters, which comprise 40–60% of the total sedimentary sulphur. Substantial amounts of the organic sulphur compounds must be formed within the sediment by boundary-layer microbial communities at the oxic-anoxic transition zone. This possibly suggests rapid recycling of sulphur in suboxic zones. Because of low concentration of SO24-- in the watermass, the zone of sulphate reduction is very thin. This coupled with the mobility of some sulphide oxidizing microbial colonies (e.g. Beggiutoa ) potentially results in an almost complete recycling of the sulphur pool near the sediment-water interface. Reduced sulphur caught in this cycling process is unavailable for sedimentary pyrite formation. The Corg/Spyriteratios for these sediments are thus high. If organically bound sulphur is not completely transformed into pyrite during late diagenesis, the Corg/ Spyrite ratio can serve as a sensitive indicator for the salinities of anaent depositional environments.  相似文献   

2.
Two sections of the Upper Cenomanian and Lower Turonian in central and south-east Poland were investigated for foraminifers, CaCO3content, carbon content insoluble in HCl (Corg) and in the carbonates (Ccarb), carbon and oxygen isotopic composition of bulk-rock carbonates and elemental abundances. The Cenomanian/Turonian boundary interval is characterized by the appearance of more marly facies, a δ13C and δ18O stable isotope anomaly, a considerable increase in Corg content and decrease in Ccarb content and substantial changes in the foraminiferal assemblages. A major carbon stable isotope excursion with a shift of +2 (PDB) occurs in the lowermost Whiteinella archaeocretacea Zone. The late Cenomanian δ13C anomaly is associated with heavy δ18O values. The peak value of δ13C corresponds to the minima in P/B ratio and in diversity of foraminiferal assemblages. A late Cenomanian anoxic event is thought to be responsible for changes in foraminiferal assemblages. However, elemental abundance analyses do not show changes in the concentrations of trace elements. This may be explained by the long distance between studied area and a source of enrichment which was probably located in the western hemisphere.  相似文献   

3.
We present an approach for tracing the fate of anthropogenic CO2, compiling a large data set of stable organic carbon isotope ratios from surface sediments, plankton, and sinking matter in the Atlantic Ocean. The δ13C values of sinking matter are generally lower by 0.5–4.6‰ compared to the surface sediments. This difference increases with increasing latitude, which is explained by a stronger modern increase in surface water [CO2 (aq)] in the Southern Ocean relative to the Tropical/Subtropical Ocean. Preindustrial dissolved CO2 concentrations in Atlantic surface waters, estimated from the δ13Corg of surface sediments, are compared to recently measured surface water [CO2 (aq)] values taken from literature. We obtain only a slight increase in [CO2 (aq)] at lower latitudes but a significant change of about 7 ± 2 μ m in high latitudinal surface waters which we attribute to anthropogenic perturbation. Our results suggest that CO2 released by human activities has been stored in Southern Ocean surface waters.  相似文献   

4.
Lower Cretaceous pelagic carbonates outcropping along the Southern Alps of northern Italy provide a record of Tethyan palaeoceanography as well as of low frequency fluctuations in the global carbon cycle. The carbonate C-isotope stratigraphy established at five selected localities in the Southern Alps allows an accurate picture to be drawn of the duration and amplitude of the Valanginian C-isotope event. δ13C values near 1.25–1.50% determined in Berriasian and lower Valanginian sediments are replaced by more pdsitive δ13C values near 3% in the late Valanginian. The carbonate C-isotope excursion ends in the early Hauterivian with values fluctuating between 1.5% and 2%. The carbonate C-isotope excursion is accompanied by a positive excursion in the total organic carbon C-isotope curve. The Valanginian C-isotope excursion identified in Tethyan sediments correlates with a C-isotope excursion recorded in the western North Atlantic, in the Gulf of Mexico, and in the Central Pacific (DSDP Sites 534,391,535 and 167). By analogy with the Aptian stage, also marked by a significant positive C-isotope excursion, the time of positive δ13C values is regarded as a time of accelerated carbon cycling coupled with increased burial rates of organic carbon and detrital material in oceanic sediments. A warm and humid climate, possiblycoupled with a high atmospheric CO2 content and a high global sea-level, may have triggered the acceleration of the global carbon cycling. In this case the Valanginian C-isotope event would reflect a first episode of Greenhouse Earth conditions during the Cretaceous.  相似文献   

5.
The Geochemical Context of Gas Hydrate in the Eastern Nankai Trough   总被引:1,自引:0,他引:1  
Abstract. Geochemical studies for gas hydrate, gas and organic matter collected from gas hydrate research wells drilled at the landward side of the eastern Nankai Trough, offshore Tokai, Japan, are reported. Organic matter in the 2355 m marine sediments drilled to Eocene is mainly composed of Type III kerogen with both marine and terrigenous organic input. The gas hydrate-bearing shallow sediments are immature for hydrocarbon generation, whereas the sediments below 2100 mbsf are thermally mature. The origins of gases change from microbial to thermogenic at around 1500 mbsf.
Carbon isotope compositions of CH4 and CO2, and hydrocarbon compositions consistently suggest that the CH4 in the gas hydrate-bearing sediments is generated by microbial reduction of CO2. The δ13C depth-profiles of CH4 and CO2 suggest that the microbial methanogenesis is less active in the Nankai Trough sediments compared with other gas hydrate-bearing sediments where solid gas hydrate samples of microbial origin were recovered. Since in situ generative-potential of microbial methane in the Nankai Trough sediments is interpreted to be low due to the low total organic carbon content (0.5 % on the average) in the gas hydrate-bearing shallow sediments, upward migration of microbial methane and selective accumulation into permeable sands should be necessary for the high concentration of gas hydrate in discrete sand layers.  相似文献   

6.
A new set of geochemical data obtained from a long sediment sequence from the Les Echets basin provides a new record of palaeoenvironmental change for western Europe. The sequence covers the late part of Marine Isotope Stage (MIS) 3 and MIS 2 ( c . 46.1–15.0 cal. kyr BP) and extends over 30 m of sediment, allowing for high sampling resolution. Distinct cyclic fluctuations in aquatic productivity proxies suggest a tempo of environmental change at Les Echets that resembles the one established for Dansgaard-Oeschger cycles and Heinrich events. Increases in organic carbon are paralleled by high hydrogenous contents and enriched δ13Corg and Corg/Ntot ratios, implying a mixture of aquatic and land-derived constituents. The stable isotope values are directly linked to primary aquatic productivity and the input of terrestrial organic matter, enriched during warm, productive, periods, and drastically depleted during cold periods, particularly Heinrich events. Phases of relatively high productivity correlate with Dansgaard-Oeschger interstadials 8–2, while Heinrich events 3 and 2 are also clearly delineated by distinct lithological horizons with very low organic contents, high dry densities and enhanced organic matter oxidation. A large hiatus occurring about the time of Heinrich event 4 suggests that the cold and dry climate reconstructed for this event in the North Atlantic region also greatly affected Les Echets and its catchment.  相似文献   

7.
Transport and fate of organic carbon by the fluvial system play a significant role in the global biogeochemical cycle of carbon. Previous studies show that the transportation of modern organic carbon from the Himalayan River system accounts for 10–20% of the total global flux to the oceans. Till date, no study has been published which dealt with the transport of organic carbon in the headwaters of the Ganga River. The Alaknanda River is a headwater stream of the Ganga, which flows in the Western Himalayas of India. Water and freshly deposited channel sediment samples were collected during the months of March 2014 and August 2014 and analysed for dissolved organic carbon (DOC), particulate organic carbon (POC) and channel organic carbon (COC). The observed variability of organic carbon concentration was correlated with factors such as discharge, physiography and suspended sediment concentration (SSC). The results show that seasonal erosivity in the basin influences its DOC concentration and physiography, thus acting as a key parameter which controls transportation, oxidation and residence time of the organic matter. The allochthonous input of sediments from the erosional activities is the major source of organic carbon. At Devprayag, Alaknanda contributes 66% of the total DOC flux carried by the Ganga River. The comparison with the previously published values indicate that due to differences in physiography and chemical weathering rate, the Ganga River transports organic carbon mainly as a dissolved load in its upstream and predominantly as POC down the Himalayan foothills.  相似文献   

8.
Few studies have examined the dynamics of sediments and suspended organic matter and their export from headwater basins in the Andes Mountains to the Amazon River, despite the fact that the Andes are the primary source of sediments to the lower Amazon basin. We measured river discharge as well as the concentration, δ15N, δ13C, %N, and %OC of coarse and fine suspended sediments (CSS and FSS) in the Chorobamba River, located in the central Andean Amazon of Peru. Samples were taken at least weekly over an entire year (July 2004-July 2005), with additional sampling during storms. Concentrations of particulate organic matter (POM) were generally low in the study river, with concentrations increasing by up to several orders of magnitude during episodic rain events. Because both overall flow volumes and POM concentrations increased under stormflow conditions, the export of POM was enhanced multiplicatively during these events. We estimated that a minimum of 80% of annual suspended sediment transfer occurred during only about 10 days of the year, also accounting for 74% of particulate organic carbon and 64% of particulate organic nitrogen transport. Significant differences occurred between seasons (wet and dry) for δ13C of coarse and fine POM in the Chorobamba River, reflecting seasonal changes in organic matter sources. The time series data indicate that this Andean river exports approximately equal amounts of fine and coarse POM to the lower Amazon. The observation that the vast majority of sediments and associated OM exported from Andean rivers is mobilized during short, infrequent storm events and landslides has important implications for our understanding of Amazon geochemistry, especially in the face of incipient global change.  相似文献   

9.
The CO2 atmospheric content has shown large variations over geological times. High contents (up to one order of magnitude more than present-day values) ultimately correspond to discrete episodes of mantle degassing, either juvenile, or subduction-related (carbon recycling). A number of arguments (e.g. the continuous volume increase of carbonate-bearing sediments with time) suggest that, throughout the Earth's history, juvenile CO2 has formed a major contribution to the global carbon budget of the Earth.
The absence of a direct relationship between major volcanic episodes and the average CO2 atmospheric content suggests that volcanoes might not be the only way by which mantle CO2 is transported to the surface. It is proposed that large quantities of juvenile CO2 could temporarily be stored in the lower continental crust during major episodes of granulite formation. These are primarily caused by magmatic underplating and they result in a vertical accretion of the crust by accumulation of CO2-bearing, mantle-derived magmas. Most of the CO2 migrates through the crust during post-metamorphic evolution and isostatic restoration of the normal continental thickness. However, large quantities of CO2 can still be present in some areas, notably as high-density fluids enclosed in minerals.  相似文献   

10.
Thin, clay-rich beds form a key component of the lithostratigraphic scheme established for Middle and Upper Turonian sediments in northern Germany. Previously, using limited petrographic evidence, clay-rich beds across much of this region have been classified as either containing altered volcanic ash (bentonites) or detrital clays. This paper demonstrates that the use of rare-earth element (REE) data enables a rapid and reliable subdivision of clay-rich beds into those composed of bentonitic clays and those composed of detrital clays. Application of this method to the Lower Saxony region of northern Germany demonstrates that four bentonites (TC Tdi, Te and Tf) and a number of detrital beds can be reliably identified and correlated. Three beds previously proposed to be bentonites are reinterpreted as being composed of detrital clays (To, TD2 and TG) and a revision of the stratigraphic nomenclature is proposed. Analysis of clay-rich beds from the Munster Basin demonstrates that it is possible to correlate individual bentonites and detrital beds between Lower Saxony and the Miinster Basin, and between shallow and deep water facies.  相似文献   

11.
In this report the state of knowledge of sediment transport by rivers of the Amazon drainage basin is reviewed. On an annual basis the Amazon river transports about 1200×106 tons of sediment from the South American continent to the ocean, which puts it among the world's largest rivers in this respect. The main source of sediment is erosion in the Andes mountains and this material is progressively diluted with sediment poor runoff from lowland draining tributaries. Almost half of the Amazon river transport is attributable to one tributary, the Rio Madeira (488×106 t/y). The Rio Negro, which drains the N crystalline shield, has a comparable water discharge to the Rio Madeira, but only contributes 7×106 t/y. In general the sediments in transport are about 1% organic carbon by weight and this results in an annual particulate carbon to the oceans of 13×106 t/y. Total carbon transport, particulate plus dissolved, is about twice this amount.  相似文献   

12.
We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit.A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit.Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates.Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (−24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (−22.4‰ to −20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.  相似文献   

13.
Carbon dioxide records from polar ice cores and marine ocean sediments indicate that the last glacial maximum (LGM) atmosphere CO2 content was 80–90 ppm lower than the mid-Holocene. This represents a transfer of over 160 GtC into the atmosphere since the LGM. Palaeovegetation studies suggest that up to 1350 GtC was transferred from the oceans to the terrestrial biosphere at the end of the last glacial. Evidence from carbon isotopes in deep sea sediments, however, indicates a smaller shift of between 400 and 700 GtC. To understand the functioning of the carbon cycle this apparent discrepancy needs to be resolved. Thus, older data have been reassessed, new data provided and the potential errors of both methods estimated. New estimates of the expansion of terrestrial biomass between the LGM and mid-Holocene are 700 GtC ± > 300 GtC, using the ocean carbon isotope-based method, compared with of 1100 GtC ± > 500 GtC using the palaeovegetation estimate. If these estimates of the carbon shift to the terrestrial biosphere are equilibrated with the dissolved carbon in the oceans, and the CaCO3 compensation of the ocean is taken into account, then the glacial atmospheric CO2 would have been between 50 (± 30) ppm and 95 (± 50) ppm higher. The glacial atmosphere therefore should have had a CO2 partial pressure of between 330 and 375 μatm. Hence, a rise of between 130 and 175 μatm in atmospheric CO2, rather than 80 μatm, at the end of the last glacial must be accounted for.  相似文献   

14.
Arctic rivers typically transport more than half of their annual amounts of water and suspended sediments during spring floods. In this study, the Sagavanirktok, Kuparuk and Colville rivers in the Alaskan Arctic were sampled during the spring floods of 2001 to determine levels of total suspended solids (TSS) and dissolved and particulate metals and organic carbon. Concentrations of dissolved organic carbon (DOC) increased from 167 to 742 μmol/L during peak discharge in the Sagavanirktok River, at about the same time that river flow increased to maximum levels. Concentrations of dissolved Cu, Pb, Zn and Fe in the Sagavanirktok River followed trends observed for DOC with 3- to 25-fold higher levels at peak flow than during off-peak discharge. Similar patterns were found for the Kuparuk and Colville rivers, where average concentrations of dissolved trace metals and DOC were even higher. These observations are linked to a large pulse of DOC and dissolved metals incorporated into snowmelt from thawing ponds and upper soil layers. In contrast with Cu, Fe, Pb and Zn, concentrations of dissolved Ba did not increase in response to increased discharge of water, TSS and DOC. Concentrations of particulate Cu, Fe, Pb and Zn were more uniform than observed for their respective dissolved species and correlated well with the Al content of the suspended particles. However, concentrations of particulate Al were poorly correlated with particulate organic carbon. Results from this study show that >80% of the suspended sediment and more than one-third of the annual inputs of dissolved Cu, Fe, Pb, Zn and DOC were carried to the coastal Beaufort Sea in 3 and 12 d, respectively, by the Kuparuk and Sagavanirktok rivers.  相似文献   

15.
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world’s largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 μm) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 μg I?1 at the river’s mouth to over 3 μg I?1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river’s variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in, the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays conservative behavior; removal is evident only during anomalous river discharge regimes. ‘Products-approach’ mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.  相似文献   

16.
Terrestrially-derived organic matter in sediments of the Delaware Estuary originates from riverine transport of soils and fresh litter, sewage and industrial wastes, and marsh export of organic matter. The quantity, composition, and spatial distribution of terrigenous organic matter in sediments was determined by elemental (C and N), lignin, and stable carbon isotope analyses. Sediments in the upper Delaware Estuary had low organic carbon content and high lignin content. In contrast, sediments in the lower Delaware Estuary had high organic carbon content and low lignin content. There was a slight decrease in the proportion of syringyl and cinnamyl phenols relative to vanillyl phenols between the upper estuary and lower estuary. Differences in lignin and stable carbon isotope compositions between sediments of the Delaware Estuary and sediments of the Broadkill River estuary (an adjoining salt-marsh estuary) supported previous observations that marshes do not export substantial quantities of organic matter to estuaries. Additional results suggested that lignin-rich sediments were concentrated in the upper estuary, most likely in the zone of high turbidity. Furthermore, algal material diluted lignin-rich sediments, particularly in the lower estuary. The weaker algal signal in bottom sediments compared to that in suspended particulate matter suggested algal material was decomposed either in the water column or at the sediment-water interface. Physical sorting of sediments prior to deposition was also indicated by observations of compositional differences between the upper and lower estuary bottom sediments. Finally, seasonal variations in primary productivity strongly influenced the relative abundance of terrestrial organic matter. In fall, however, the proportion of lignin was greatest because of a combination of greater inputs of terrestrially-derived organic matter, lower river discharge, and a decrease in algal biomass.  相似文献   

17.
The distribution and source of organic matter in reservoir sediments   总被引:2,自引:0,他引:2  
The bottom sediments of two reservoirs, one with significant river sediment input and one without, were analyzed for organic matter content. Lake Texoma sediments average 1.0% organic carbon, of which 0.26% organic carbon is deposited by the river sediments of the Red and Washita River deltas. In Fort Gibson reservoir, where there is minimal river sediment input, the organic carbon averages 1.2% and is deposited with a strong correlation to water depth (+0.9). There is a significant difference between the C/N ratio of Lake Texoma sediments (11.5) and Fort Gibson sediments (9.6). The higher C/N ratio is suggested to be a result of the larger input of terrestrial plant debris (with a high original C/N ratio) by the rivers draining into Lake Texoma and the relatively high resistance of the lignin material in the plant debris to decomposition in the reservoir sediments.  相似文献   

18.
The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma) succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent measurements those suggest main flows directed towards southeast, south and east with minor variations. This implies that the river system stabilized later than 41 Ma and the Higher Himalaya attained sufficient height around this time. The chemical composition of the sandstones and mudstones occurring in the early foreland basin sequences are intermediate between the active and passive continental margins and/or same as the passive continental margins. The sedimentary succession of this basin has sustained a temperature of about 200 °C and undergone a burial depth of about 6 km.  相似文献   

19.
The δC13 value for sedimentary organic carbon in four estuaries of the Gulf of Mexico increases with radial distance from the river mouth. Mass balance calculations indicate that terrestrial organic carbon is limited to sediments within a relatively short distance from the river mouth. This distance is a function of the discharge rate of the river. For the Mississippi River, terrestrial organic carbon is limited to sediments within 69 km of the mouth of Pass à Loutre and 61 km of South Pass. These data indicate that the low δC13 (< ?22%.) values reported for Pleistocene sediments in the Gulf of Mexico may be the result of factors in addition to the postulated large influx of terrestrial organic carbon.  相似文献   

20.
Expanded sedimentary records from the Tethys reveal unique faunal and isotopic changes across the Palaeocene-Eocene (P-E) transition. Unlike in the open oceans, the Tethys exhibits a gradual decrease of 1.5% in δ13C values prior to the rapid δ13C excursion. Associated with the 613C excursion is a decrease in calcite burial, increase in detrital content and appearance of a unique opportunistic planktic foraminifera1 assemblage (e.g. compressed acarininids). The existence of a prelude decrease in δ13C values in the Tethys suggests that the P-E δ13C excursion may have occurred in two steps and over a few hundred thousand years, rather than as one step over a few thousand years as previously suggested. This slower excursion rate is readily explained by changing organic carbon weathering or burial rates and avoids the need of invoking ad hoc scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号