首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A detailed palaeomagnetic study of Cretaceous age volcanic and sedimentary arc rocks from central Cuba has been carried out. Samples from 32 sites (12 localities) were subjected to detailed demagnetisation experiments. Nineteen sites from the Los Paso, Mataguá, Provincial and Cabaiguán Formations yielded high unblocking temperature, dual polarity directions of magnetisation which pass the fold tests with confidence levels of 95% or more and are considered to be primary in origin. The palaeomagnetic inclinations are equivalent to palaeolatitudes of 9°N for the Aptian, 18°N for the Albian. A synfolding remanence identified in 5 sites from the younger Hilario Formation indicates a late Cretaceous remagnetisation at a palaeolatitude of 16°N. Our results are in good agreement with previous palaeogeographic models and provide the first high quality palaeomagnetic data demonstrating the gradual northward movement of the Cretaceous Volcanic Arc throughout the Cretaceous. The declination values obtained all indicate significant and similar amounts of anticlockwise rotation from the oldest sequences studied through to the late Cretaceous remagnetisation. This rotation is most likely related to collision of the arc with the North American plate and transpressional strike slip movement along the northern margin of the Caribbean plate as it progressed eastwards into the large Proto-Caribbean basin.  相似文献   

2.
Field investigation together with a number of geochemical petrographical analyses, as well as absolute K-Ar age determinations and geophysical data, allow the recognition of an evolutionary sequence of geodynamic events which have affected the northern region of Antarctic Peninsula and the adjacent islands.A significant volcanic calc-alkaline belt, which developed on the northwestern margin of the Antarctic Peninsula during the Cretaceous to Middle Tertiary, is indicative of active subduction of the Antarctic plate in that area. This activity decreases during the Lower Miocene, giving way to an expansive phase represented by the Bransfield Rift. These extensional processes are dominant during the Pliocene, creating a rift system in southeastern Bransfield towards Larsen. Both the Bransfield and Larsen systems comprise one “fan-like rift system”, associated with the Prince Gustav Rift and the Scotia Arc micro-plate. Ejection of abundant pyroclastic material generated a large plateau of palagonite hyaloclastites of basaltic alkaline composition. During the Pleistocene-Recent, the extensional activity continued, as evidenced by the active volcanic fractures represented in Bransfield by the Deception, Penguin and Bridgeman volcanic centres; in the Prince Gustav Rift by Paulet Islands and others, and in Larsen by the Coley, Seal Nunatak and Argo volcanic centres. The latter is characterized by basaltic olivine-alkaline effusions. These rifts and the continental blocks are affected by a series of fractures with a N60°–70°W strike, which could be directly associated with the Hero Fracture Zone extending northwest of the South Shetland Islands Trench.  相似文献   

3.
A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean “in situ” direction for the SOC is Dec: 286.9°, Inc: − 58.5°, α95: 6.9°, N: 11 (sites).Rock magnetic properties, petrography and whole-rock K–Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous.The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50° is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30° westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting.  相似文献   

4.
A paleomagnetic study of platform-facies carbonate rocks of the mid-Cretaceous Morelos Formation and deep-water carbonate rocks of the overlying Upper Cretaceous Mezcala Formation, sampled at Zopilote canyon, in Guerrero State, southern Mexico, indicates that their characteristic magnetization was acquired contemporaneously with folding of these rocks during the Late Cretaceous Laramide orogeny. The remanence carrier is interpreted to be magnetite, although other mineral phases of high coercivity carry recent secondary overprints. The overall mean is of Dec=323.1° and Inc=36.5° (k=162.7; α95=2.7°; N=18 sites; 64% unfolding). Comparison with the North America reference direction indicates that this area has experienced a small, yet statistically significant, counterclockwise direction of 19.2±4.0°. Similar rotations are documented in other localities from southern Mexico; rotations are linked to mid-Tertiary deformation associated with the left-lateral strike-slip fault system that accommodated motion of the Chortis and Xolapa blocks.  相似文献   

5.
Paleomagnetic samples of Paleocene–Eocene red sandstones were collected at 36 sites from the Jiangdihe-4 and Zhaojiadian formations around the Yongren (26.1°N, 101.7°E) and Dayao areas (25.7°N, 101.3°E). These areas are located in the Chuxiong basin of the Chuan Dian Fragment, southwestern part of the Yangtze block. After stepwise thermal demagnetization, a high-temperature component with unblocking temperature of about 680 °C is isolated from 26 sites. The primary nature of this magnetization is ascertained through positive fold and reversal tests at 95% confidence level. The tilt-corrected mean paleomagnetic directions for the Yongren and Dayao areas are D=17.2°, I=26.6° with α95=5.8° and D=16.5°, I=31.1° with α95=4.8, respectively. Easterly deflected declinations from this study are consistent with those reported from other areas of the Chuxiong basin, indicating its wide presence in the Cretaceous–Eocene formations of the said basin. Comparison with declination values expected from the Cretaceous–Eocene APWP of Eurasia indicates that the magnitude of clockwise rotation systematically increases toward the southeast within the Chuxiong basin as well as in the Chuan Dian Fragment. This trend of the differential tectonic rotation in the Chuan Dian Fragment is consistent with curvature of the Xianshuihe–Xiojiang fault system. Deformation of the Chuxiong basin can fairly be associated with the formation of eastward bulge in the southern part of the Chuan Dian fragment. During southward displacement, the Chuan Dian Fragment was probably subjected to tectonic stresses as a result interaction with the Yangtze and Indochina blocks, which resulted into east–west extension and north–south shortening.  相似文献   

6.
There is a difference of 120° between the strike of the Pindos mountain chain and that of the Argolis peninsula. Both consist of rocks of the same age (Triassic Jurassic).Samples were collected to see if paleomagnetic data also exhibited this difference in angle. 23 samples from two sites and four lava strata of the Pindos resulted in normal and reversed directions with a mean direction D = 334°, I = 22° with α95° = 9°, and 24 samples from four sites of the Argolis peninsula in a mean direction of D = 82°, I = 19° with α95° = 17°. This is a declination difference of D = 108°. Therefore, a relative rotational block movement with an angle of about 110° could be assumed. The result depends to a great extent on the dip correction of the lava flows.  相似文献   

7.
The Midcontinent Rift (MCR) of North America comprises a series of basaltic sheets, flows and intrusive rocks emplaced in the Lake Superior region during the Mesoproterozoic. The mafic rocks preserved on the northern flank of Lake Superior represent the older portions of the rift sequence and offer insights into the early development of the rift. New geochronological, geochemical and paleomagnetic data are presented for the dikes and sills located in and south of Thunder Bay, Ontario. Three sill suites are recognized within the study area; an earlier, spatially restricted ultramafic unit termed the Riverdale sill, the predominant Logan sills and Nipigon sills in the north of the study area. In addition three dike sets are recognized, the north-east trending Pigeon River swarm, the north-west trending Cloud River dikes and the Mt. Mollie dike. The geochemical data demonstrate that the majority of sills south of Thunder Bay are of Logan affinity and distinct from those of broadly similar age in the Nipigon Embayment to the north. The Pigeon River dikes that intrude the sills are geochemically coherent but distinct from the Logan sills and could not be feeders to the sills. The new age of 1109.2 ± 4.2 Ma for the Cloud River dike and its R polarity are consistent with published magnetostratigraphy. The Mt. Mollie dike age (1109.3 ± 6.3 Ma) indicates that it is not coeval with the spatially associated Crystal Lake gabbro as previously thought. The complexity of the dike and sill suites on the northern flank of suggests that the early phases of rifting occurred in distinct and changing stress fields prior to the main extensional rifting preserved in younger rocks to the south. The geochemistry and geochronology of the intrusions suggest a long-lived and complex magmatic history for the Midcontinent Rift.  相似文献   

8.
The Palaeoproterozoic Magondi Supergroup lies unconformably on the Archaean granitoid-greenstone terrain of the Zimbabwe Craton and experienced deformation and metamorphism at 2.06–1.96 Ga to form the Magondi Mobile Belt. The Magondi Supergroup comprises three lithostratigraphic units. Volcano-sedimentary rift deposits (Deweras Group) are unconformably overlain by passive margin, back-arc, and foreland basin sedimentary successions, including shallow-marine sedimentary rocks (Lomagundi Group) in the east, and deeper-water shelf to continental slope deposits in the west (Piriwiri Group). Based on the upward-coarsening trend and presence of volcanic rocks at the top of the Piriwiri and Lomagundi groups, the Piriwiri Group is considered to be a distal, deeper-water time-equivalent of the Lomagundi Group. The Magondi Supergroup experienced low-grade metamorphism in the southeastern zone, but the grade increases to upper greenschist and amphibolite facies grade to the north along strike and, more dramatically, across strike to the west, reaching upper amphibolite to granulite facies in the Piriwiri Group.  相似文献   

9.
A high-resolution side-scan sonar survey of the lake bed off the Keweenaw Peninsula, Lake Superior, demonstrates that bottom currents are affecting lake bed morphology at depths up to 240 m. Numerous lineations which run parallel to the shore appear to be sand ribbons. A field of sedimentary furrows which occurs in one area demonstrates the long-term directional stability of the near-bottom flow. Large (100–300 m in diameter, 2–5 m deep), unusual ring-like or arcuate depressions are common throughout the western half of Lake Superior. These rings themselves do not appear to have been formed by bottom currents, but may have developed as water was released by the rapid compaction of glacial sediments which underlie the lake bed. Off the Keweenaw Peninsula the forms of the rings have been modified by bottom currents. The bottom currents which have modified the lake bed are probably generated when storms cross the lake at times when it is poorly stratified.  相似文献   

10.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   

11.
Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar–Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably “mid-Permian” age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to  90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake Balkhash and about 400 km to the north of the Ili River valley. The timing of the ccw as well as cw rotations is clearly later than the disappearance of any marine basins from northern Tarim, the Tien Shan and eastern Kazakhstan, so that the rotations cannot be attributed to island-arc or Andean-margin plate settings — instead we attribute the rotations to large-scale, east–west (present-day coordinates), sinistral wrenching in an intracontinental setting, related to convergence between Siberia and Baltica, as recently proposed by Natal'in and Şengör [Natal'in, B.A., and Şengör, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the palaeo-Tethyan closure, Tectonophysics, 404, 175–202.]. Our previous work in the Chingiz and North Tien Shan areas on Ordovician and Silurian rocks suggested relative rotations of  180°, whereas the Permian declination differences are of the order of 90° between the two areas. Thus, we assume that about 50% of the total post-Ordovician rotations are of pre-Late Permian age, with the other half of Late Permian–earliest Mesozoic age. The pre-Late Permian rotations are likely related to oroclinal bending during plate boundary evolution in a supra-subduction setting, given the calc-alkaline character of nearly all of the pre-Late Permian volcanics in the strongly curved belts.  相似文献   

12.
The Appalachian fold–thrust belt is characterized by a sinuous trace in map-view, creating a series of salients and recesses. The kinematic evolution of these arcuate features remains a controversial topic in orogenesis. Primary magnetizations from clastic red beds in the Pennsylvania salient show Pennsylvanian rotations that account for about half of the curvature, while Kiaman-aged (Permian) remagnetizations display no relative rotation between the limbs. The more southern Tennessee salient shows a maximum change in regional strike from ~ 65° in Virginia to ~ 10° in northern Georgia. Paleomagnetic results from thirty-two sites in the Middle to Upper Ordovician Chickamauga Group limestones and twenty sites from the Middle Cambrian Rome Formation red beds were analyzed to constrain the relative age of magnetization as well as the nature of curvature in the Tennessee salient. Results from three sites of the Silurian Red Mountain Formation were added to an existing dataset in order to determine whether the southern limb had rotated.After thermal demagnetization, all three sample suites display a down and southeasterly direction, albeit carried by different magnetic minerals. The syn-tilting direction of the Chickamauga limestones lies on the Pennsylvanian segment of the North American apparent polar wander path (APWP), indicating that deformation was about half completed by the Late Pennsylvanian. The Rome and Red Mountain Formations were also remagnetized during the Pennsylvanian. Both the Chickamauga limestones and Rome red beds fail to show a correlation between strike and declination along the salient, suggesting either that the salient was a primary, non-rotational feature or that secondary curvature occurred prior to remagnetization, as it did in Pennsylvania. Moreover, remagnetized directions from the Red Mountain sites show no statistical difference between the southern limb of the salient and the more northeasterly trending portion of the fold–thrust belt in Alabama. Thus, all of the studied units in the Tennessee salient are remagnetized and show no evidence for rotation. This confirms that remagnetization was widespread in the southern Appalachians and that any potential orogenic rotation must have occurred prior to the Late Pennsylvanian.  相似文献   

13.
The 14 November 2001 Kunlun, China, earthquake with a moment magnitude (Mw) 7.8 occurred along the Kusai Lake–Kunlun Pass fault of the Kunlun fault system. We document the spatial distribution and geometry of surface rupture zone produced by this earthquake, based on high-resolution satellite (Landsat ETM, ASTER, SPOT and IKONOS) images combined with field measurements. Our results show that the surface rupture zone can be divided into five segments according to the geometry of surface rupture, including the Sun Lake, Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments from west to east. These segments, each 55 to 130 km long, are separated by step-overs. The Sun Lake segment extends about 65 km with a strike of N45° 75°W (between 90°05′E 90°50′E) along the previously unrecognized West Sun Lake fault. A gap of about 30 km long exists between the Sun Lake and Buka Daban Peak where no obvious surface ruptures can be observed either from the satellite images or field observations. The Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments run about 365 km striking N75° 85°W along the southern slope of the Kunlun Mountains (between 91°07′E 94°58′E). This segmentation of the surface rupture is well correlated with the pattern of slip distribution measured in the field. Detailed mapping suggest that these five first-order segments can be further separated into over 20 second-order segments with a length of 10–30 km, linked by smaller scale step-overs or bends.Our result also shows that the total coseismic surface rupture length produced by the 2001 Kunlun earthquake is about 430 km (excluding the 30-km-long gap), which is the longest coseismic surface rupture for an intracontinental earthquake ever recorded.Finally, we suggest a multiple bilateral rupture propagation model that shows the rupture process of the 2001 Mw 7.8 earthquake is complex. It consists of westward and eastward rupture propagations and interaction of these bilateral rupture processes.  相似文献   

14.
The ENE-tilted Mesta half-graben contains a 3-km-thick section of Priabonian (Late Eocene) to Oligocene sedimentary and volcanic rocks that rest unconformably on basement metamorphic rocks along its west side. Basal strata dip 50–60° E and dip at progressively lower angles upward, indicating synrotational deposition. The southern part of the half-graben contains nested volcanic caldera complexes, formed during the deposition of the middle part of the sedimentary sequence, which have been rotated by about half the total rotation of the sedimentary succession. The half-graben is bounded on the east by a fault that steepens from more deeply exposed structural levels in the south (8–18° W) to shallower exposed structural levels in the north (70° W) and together with the rotation of Paleogene strata during deposition indicate the Mesta half-graben is underlain by a listric detachment fault, the Mesta detachment. Subhorizontal Middle Miocene strata that unconformably overlie tilted Paleogene strata yield an upper age limit to the extension. West and northwest of the Mesta half-graben are many other NNW-trending NE-tilted Paleogene half-grabens which we suggest are part of an important extended area in SW Bulgaria and eastern Macedonia that lies above one or more west-dipping detachment faults and date the beginning of Aegean extension in the southern Balkan region as at least as old as Priabonian. The Mesta detachment is oblique to the trend of a contemporaneous Paleogene magmatic arc in the southern Balkans and the origin of the detachment is probably related to gravitationally induced spreading of thickened hot arc crust and Hellenic trench roll back.  相似文献   

15.
As part of the Antarctic Digital Magnetic Mapping Project (ADMAP) workers from VNIIOkeangeologia (Russia), the British Antarctic Survey (UK) and the Naval Research Laboratory (USA) have brought together almost all of the available magnetic data in the area 0–120°W, 60–90°S. The final map covers the whole Weddell Sea and adjacent land areas, the Antarctic Peninsula and the seas to the west, an area comparable in size with that of the USA. This paper describes the methods used during the compilation of the map and reviews briefly some of the main features shown on it. Distinct magnetic provinces are associated with Precambrian rocks of the East Antarctic craton, highly extended continental crust in the Weddell Sea embayment, the arc batholith of the Antarctic Peninsula, and oceanic crust of the northern Weddell Sea, which was created as a direct consequence of South America–Antarctica plate motion and oceanic crust generated at the Pacific–Antarctic ridge. The magnetic anomaly map thus provides an overview of the fragmentation of south-western Gondwana and the tectonic development of the Weddell Sea sector of Antarctica.  相似文献   

16.
Three sites from Cretaceous limestone and Jurassic sandstone in northern Oaxaca, Mexico, were studied paleomagnetically. Thermal demagnetization isolated site-mean remanence directions which differ significantly from the recent geomagnetic field. The paleopole for the Albian–Cenomanian Morelos formation is indistinguishable from the corresponding reference pole for stable North America, indicating tectonic stability of the Mixteca terrane since the Cretaceous. Rock magnetic properties and a positive reversal test for the Bajocian Tecomazuchil sandstone suggest that the remanence could be of primary origin, although no fold test could be applied. The Tecomazuchil paleopole is rotated 10°±5° clockwise and displaced 24°±5° towards the study area, with respect to the reference pole for stable North America. Similar values were found for the Toarcien–Aalenian Rosario Formation, with 35°±6° clockwise rotation and 33°±6° latitudinal translation. These data support a post-Bajocian southward translation of the Mixteca terrane by around 25°, which was completed in mid-Cretaceous time.  相似文献   

17.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

18.
The Magadi area, located in the southern part of the Kenya Rift, is a seismically active region where rifting is still in progress. The recent tectonic activity has been investigated through a seismological survey and the study of neotectonic joints found in Lake Magadi sediments, which were deposited some 5000 years ago. The structural analysis of these open fractures was combined with a quantitative analysis of the orientation and size characteristics of imagery faults. The gathered data demonstrate (1) that the majority of the systematic joints have straight and parallel trajectories with a common en echelon mode of propagation displayed through a rich variety of patterns, and (2) that there is a self-similarity in fault and joint principal directions recognised at the different telescopic scales. SPOT image (1:125,000), aerial photos (1:76,000), and outcrop fieldwork reveal two important structural orientations which are N015°E and N015°W. The N015°E regional direction is consistent with the orientation of the southern segment of the Kenya Rift. Structural analysis is supported by results of a joint microseismic investigation in the Lake Magadi area. Obtained focal mechanism solutions indicate an E–W to ESE–WNW normal faulting extension direction.  相似文献   

19.
The Central Metasedimentary Belt boundary tectonic zone (CMBbtz) is a 10–20-km-wide zone of intense structural deformation within the 1.3–1.0 Ga Grenville orogen of southeastern Canada. The crustal structure of the exposed CMBbtz has been well studied, but its sub-Phanerozoic location and geometry beneath the urban development and nuclear stations of the Toronto region are not well known. A new 75-km Lithoprobe reflection profile acquired close to Toronto provides a clear image of the CMBbtz as a panel of southeast-dipping reflections that extends with moderate dip (<25°) to mid-crustal depth (25 km). These dipping reflections truncate and (or) overprint a subhorizontal band of reflectivity at 21 km depth. The seismic line is oblique to the major structural trends; cross-dip analysis shows that the southeast-dipping reflections have a strike and dip of N13°E and 25°, whereas the “subhorizontal” reflections strike and dip at N65°E and 20°, respectively. Both of these bands of reflectivity can be correlated to magnetic anomalies in the CMBbtz or its immediate footwall. Magnetic anomalies with similar strike directions are well expressed within a distinct rhomboid-shaped region (106×109 km) in the subsurface of western Lake Ontario, herein named Mississauga domain. Taken together, the seismic and magnetic data are inconsistent with existing models, in which the CMBbtz is extrapolated beneath Lake Ontario along a linear magnetic anomaly. We propose a revised subsurface trace of the CMBbtz along the western edge of the Mississauga domain. Small earthquakes in western Lake Ontario appear to cluster along trends co-linear with ENE magnetic anomalies, suggesting a possible degree of basement tectonic control on local intraplate seismicity.  相似文献   

20.
The Antarctic Peninsula has been part of a magmatic arc since at least Jurassic times. The South Shetland Islands archipelago forms part of this arc, but it was separated from the Peninsula following the Pliocene opening of the Bransfield Strait. Dikes are widespread throughout the archipelago and are particularly accessible on the Hurd Peninsula of Livingston Island. The host rocks for the dikes are represented by the Miers Bluff Formation, which forms the overturned limb of a large-scale fold oriented 63/23 NW. The orientation of minor structures indicates a fold axis oriented NNE–SSW (24/0). Structural analysis of the dikes and their host rocks shows that the tectonic regime was similar to other parts of the archipelago and that only minor changes of the stress field occurred during dike emplacement.Based on crosscutting field relationships and geochemical data, six early Paleocene to late Eocene intrusive events can be distinguished on Hurd Peninsula. In contrast to calc-alkaline dikes from other parts of the South Shetland Islands, the majority of the Hurd Peninsula dikes are of tholeiitic affinity. Nd and Pb isotope data indicate a significant crustal component, particularly during initial magmatic activity.Plagioclase 40Ar/39Ar and whole rock K–Ar ages show that dike emplacement peaked during the Lutetian (48.3 ± 1.5, 47.4 ± 2.1, 44.5 ± 1.8 and 43.3 ± 1.7 Ma) on Hurd Peninsula and also further northeast on King George Island. Dike intrusion continued on Livingston Island at least until the Priabonian (37.2 ± 0.9 Ma). The type of magma sources (mantle, slab, crust and sediment) did not change, though their relative magmatic contributions varied with time.During Cretaceous and Early Paleogene times, the Antarctic Peninsula including the South Shetland Islands was situated southwest of Patagonia; final separation from South America occurred not before the Eocene. Thus, the geological evolution of Livingston Island is related as much to the development of Patagonia as of Antarctica, and needs to be considered within the history of southernmost South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号