首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3–0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965–1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251–1256.].  相似文献   

2.
Several temperature-depth profiles measured in Kasai and in Shaba provinces of Zaire using mining exploration boreholes exhibit a significant negative temperature gradient near the surface. This anomalous curvature which extends to 100–200 m depth could reflect the effect of variations in surface conditions. Applying the theory of heat conduction in a semi-infinite homogeneous medium, these profiles indicate a surface warming by 3–4°C. This warming is related to the effect of the environmental changes associated with the mining exploitation and the urbanization during the last 40–90 years.  相似文献   

3.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

4.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   

5.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

6.
The effect of climate change on carbon in Canadian peatlands   总被引:3,自引:0,他引:3  
Peatlands, which are dominant features of the Canadian landscape, cover approximately 1.136 million km2, or 12% of the land area. Most of the peatlands (97%) occur in the Boreal Wetland Region (64%) and Subarctic Wetland Region (33%). Because of the large area they cover and their high organic carbon content, these peatlands contain approximately 147 Gt soil carbon, which is about 56% of the organic carbon stored in all Canadian soils.A model for estimating peatland sensitivity to climate warming was used to determine both the sensitivity ratings of various peatland areas and the associated organic carbon masses. Calculations show that approximately 60% of the total area of Canadian peatlands and 51% of the organic carbon mass in all Canadian peatlands is expected to be severely to extremely severely affected by climate change.The increase in average annual air temperature of 3–5 °C over land and 5–7 °C over the oceans predicted for northern Canada by the end of this century would result in the degradation of frozen peatlands in the Subarctic and northern Boreal wetland regions and severe drying in the southern Boreal Wetland Region. In addition, flooding of coastal peatlands is expected because of the predicted rise in sea levels. As a result of these changes, a large part of the carbon in the peatlands expected to be severely and extremely severely affected by climate change could be released into the atmosphere as carbon dioxide (CO2) and methane (CH4), which will further increase climate warming.  相似文献   

7.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

8.
Climate changes and recent glacier behaviour in the Chilean Lake District   总被引:1,自引:1,他引:0  
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas.  相似文献   

9.
In this paper, we present 50 surface water samples collected during the IMAGES III cruise (June–July 1997) along a transect from New Zealand to the China Sea (42°S–178°E, 21°N–120°E) covering a temperature range from 13.3 to 30.4 °C. A very worthwhile aspect of this study is a coupling of both biomarker (alkenone) and coccolithophorid counting. We show that the U37k′–temperature relationship is very similar to the Prahl et al. [Geochim. Cosmochim. Acta 52 (1988) 2203] culture calibration and to the global core top calibration of Müller et al. [Geochim. Cosmochim. Acta 62 (1998) 1757]. However, in the warmest surface waters of the Western Pacific ocean (>26.4 °C) where Gephyrocapsa oceanica is likely the most widespread species, the associated U37k′ has a constant value of 1.0. The consequence is that above this temperature threshold, U37k′ cannot be used as an accurate paleothermometer.  相似文献   

10.
In this paper we compare sea level trends observed at a few selected tide gauges of good quality records with thermosteric (i.e., due to ocean temperature change) sea level trends over 1950–1998 using different gridded ocean temperature data sets from Levitus et al. (2000) [Levitus, S., Stephens, C., Antonov, J.I., Boyer, T.P., 2000. Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948–1998. U.S. Gov. Printing Office, Washington, D.C. pp. 23.], Ishii et al. (2003) [Ishii, M., Kimoto, M., Kachi, M., 2003. Historical ocean subsurface temperature analysis with error estimates, Mon. Weather Rev., 131, 51–73.] and Levitus et al. (2005) [Levitus S., Antonov, J.I., Boyer, T.P., 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32, L02604. doi:10.1029/2004GL021592.]. When using the Levitus data, we observe very high thermosteric rates at sites located along the northeast coast of the US, north of 37°N. Such high rates are not observed with the Ishii data. Elsewhere, thermosteric rates agree reasonably well whatever the data set. Excluding the northeast US coastline sites north of 37°N, we compare tide gauge-based sea level trends with thermosteric trends and note that, in spite of a significant correlation, the latter are too small to explain the observed trends. After correcting for thermosteric sea level trends, residual (observed minus thermosteric) trends have an average value of 1.4 ± 0.5 mm/year, which should have an eustatic (i.e., due to ocean mass change) origin. This result supports the recent investigation by Miller and Douglas (2004) [Miller, L., Douglas, B.C., 2004. Mass and volume contributions to 20th century global sea level rise. Nature 428, 406–408.] which suggests that a dominant eustatic contribution is needed to explain the rate of sea level rise of the last decades observed by tide gauges, and shows that Cabanes et al. (2001) [Cabanes, C., Cazenave, A., Le Provost, C., 2001. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842.] arrived at an incorrect conclusion due to peculiarities in the gridded Levitus et al. (2000) [Levitus, S., Stephens, C., Antonov, J.I., and Boyer, T.P., 2000. Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948–1998. U.S. Gov. Printing Office, Washington, D.C. pp. 23.] data set.  相似文献   

11.
Considerable debate persists among scientists interested in the nature of the ice cap on the Tibetan Plateau during the late Quaternary. We examine the implications, on this problem, of the high resolution data that has recently become available from the Dunde ice cap in north Tibet. The observed −2% change in the δ18O of the ice formed at the Dunde ice cap during the Last Glacial Stage (LGS) suggests a limit in the range of 5–7°C on the reduction in annual surface air temperature over Tibet during the LGS. This then translates to an Equilibrium Line Altitude (ELA) lowering of 700–1200 m. Due to this lowering, ELA could have reached below the level of the surface of the plateau resulting in an extensive ice sheet formation during LGS.  相似文献   

12.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   

13.
On the basis of the geophysical (seismic profiles and electric tomography), geomorphic and geological data, we re-evaluate the post-Pliocene structural interpretation of the southern Upper Rhine graben (Basel–Mulhouse area): we demonstrate a Plio–Pleistocene northward propagation of the Jura thrust and fold belt up to Mulhouse proceeding from a succession of four 10 km apart ramps (from north to south Ferrette, Muespach, Magstatt and Rixheim) rooted within the late Triassic evaporitic marls acting as a decollement. This domain was previously considered as having undergone an on-going continuous extension (horst of Mulhouse bounded by the Quaternary Sirentz and Dannemarie grabens).The Quaternary activity of this thin-skinned tectonics induces the growth of a sedimentary wedge whose regional slope, which comprised between 1.4° and 1° to the north, also attests to a low friction basal detachment. More into details, these ramps correspond to 40–50-m high jumps within the forward topographic slope. Pleistocene activity is suggested just above the Muespach ramp by the presence of a 5–10-m north-facing scarp corresponding in depth to a 3-m vertical offset of early Pleistocene alluvial deposits. Farther to the north, a stronger incision of the Rhine Würm terrace can be interpreted as the result of the growth of the Mulhouse–Rixheim frontal ramp.This northward propagation of the Jura thrust and fold belt is strongly controlled by the Oligocene structural inheritage. The development of the frontal ramp in Mulhouse has to be related to the Oligocene significant vertical offset of the Triassic evaporite along the Mulhouse Railway Station fault preventing a propagation of the decollement farther to the north. In the same way, the fold propagation is laterally segmented by the N20°E trending Oligocene fabrics (from East to West, Rhine Valley flexure fault, Allschwil–Istein fault system and Illfurth fault) which acts above the decollement as lateral ramps. To the west, the development of a shallow anticline along the Illfurth fault suggests that the thin-skinned propagation is oblique with respect to the Oligocene fabrics. It results in spacial contrast between a left-lateral-reverse and a right-lateral–normal shallow kinematics along the western and eastern lateral ramps, respectively. In depth to the east, it also induces a vertical contrast between shallow (right-lateral–normal) and deep (left-lateral given by fault plane solutions) kinematics along the Istein–Allschwill–Rhine Valley fault system.Few arguments supporting a nucleation of the Basel-1356 earthquake, the strongest event in NW Europe in the last thousand years, onto the Rhine Valley fault system beneath the decollement have been given. However, we emphasize that the above mentioned coeval thin (aseismic)- and thick (seismic)-skinned tectonics along the Istein–Allschwill–Rhine Valley fault system would make difficult both the identification and the interpretation of the surface rupture of the Basel-1356 earthquake.  相似文献   

14.
Because the Khumbu Himal of the Nepal Himalayas lacks long-term climate records from weather stations, mountain permafrost degradation serves as an important indicator of climate warming. In 1973, the permafrost lower limit was estimated to be 5200–5300 m above sea level (ASL) on southern-aspect slopes in this region. Using ground-temperature measurements, we examined the mountain permafrost lower limit on slopes with the same aspect in 2004. The results indicate that the permafrost lower limit was 5400–5500 m ASL in 2004. The permafrost lower limit was estimated to be 5400 to 5500 m on slopes with a southern aspect in the Khumbu Himal in 1991 using seismic reflection soundings. Thus, it is possible that the permafrost lower limit has risen 100–300 m between 1973 and 1991, followed by a stable limit of 5400 to 5500 m over the last decade. An increase in mean annual air temperature of approximately 0.2 to 0.4 °C from the 1970s to the 1990s has indicated a rise in the permafrost lower limit of 40 to 80 m at the Tibetan Plateau. The rise in the mountain permafrost lower limit in the Khumbu Himal exceeds that of the Tibetan Plateau, suggesting the possibility of greater climate warming in the Khumbu Himal.  相似文献   

15.
Several temperature–depth profiles recorded at Pipe Mine, 32 km southwest of Thompson, Manitoba, in central Canada, exhibit a marked departure from the equilibrium gradient. These profiles could be interpreted as indicating strong warming (up to 4.5 K) of the ground surface during the last 200 years. All the temperature profiles at Pipe Mine show perturbations stronger than at the others sites in the Thompson Nickel Belt. Temperature profiles recorded near the town of Thompson show a moderate warming (≈1–2 K) trend, while temperature profiles at Soab, 45 km southwest of Pipe Mine, indicate very moderate cooling (≈0.5 K). There was little human activity in this part of Manitoba before the development of the mining camp of Thompson in the late 1950s. Our study shows the variability of ground surface temperature histories at a very local scale (i.e. <1 km) with much stronger signals at some of the Pipe Mine drill holes than at others. These holes are located within 500 m of the highway and a power line built after 1955, at ≈3 km from the now abandoned open pit mine. The ground surface temperature history (GSTH) obtained by the inversion of Pipe Mine temperature profiles suggests that a recent (50 years) and strong (≈1–2 K) ground surface warming is superimposed on a 1–2 K warming trend that started 200 years ago, without any indication of a cold (little ice ages) episode before. The recent warming (40 years) at Pipe Mine is only a local effect and is likely to be related to the presence of the highway. Before 1960, the ground surface temperature history for Pipe is similar to other sites in the Thompson region. Ground surface temperature histories from other profiles within and near the city of Thompson seem less affected by environmental perturbations and their trends are parallel to that of the meteorological records in the Canadian Prairies.  相似文献   

16.
We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u, g, and i (358, 487, and 758 nm, respectively). The occultation probed latitudes 2° S and 1° N during immersion and emersion, respectively. A prominent central flash was present in only the i filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785–791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991–1015] gave the altitudes of line of sight optical depth equal to unity: 396±7 and 401±20 km (u immersion and emersion); 354±7 and 387±7 km (g immersion and emersion); and 336±5 and 318±4 km (i immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3±0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541–563].  相似文献   

17.
The occurrence of permafrost in bedrock in northern Fennoscandia and its dependence on past and presently ongoing climatic variations was investigated with one- (1D) and two-dimensional (2D) numerical models by solving the transient heat conduction equation with latent heat effects included. The study area is characterized by discontinuous permafrost occurrences such as palsa mires and local mountain permafrost. The ground temperature changes during the Holocene were constructed using climatic proxy data. This variation was used as a forcing function at the ground surface in the calculations. Several versions of the present ground temperature were applied, resulting in different subsurface freezing–thawing conditions in the past depending on the assumed porosity and geothermal conditions.Our results suggest that in high altitude areas with a cold climate (present mean annual ground temperature between 0°C and −3°C), there may have been considerable variations in permafrost thickness (ranging from 0 to 150 m), as well as periods of no permafrost at all. The higher is the porosity of bedrock filled with ice, the stronger is the retarding effect of permafrost against climatic variations.Two-dimensional models including topographic effects with altitude-dependent ground temperatures and slope orientation and inclination dependent solar radiation were applied to a case of mountain permafrost in Ylläs, western Finnish Lapland, where bedrock permafrost is known to occur in boreholes to a depth of about 60 m. Modelling suggests complicated changes in permafrost thickness with time as well as contrasting situations on southern and northern slopes of the mountain.Extrapolating the climatic warming of the last 200 years to the end of the next century when the anticipated increase in the annual average air temperature is expected to be about 2 K indicates that the permafrost occurrences in bedrock in northern Fennoscandia would be thawing rapidly in low-porosity formations. However, already a porosity of 5% filled with ice would retard the thawing considerably.  相似文献   

18.
The UVR-PAR Argentinean Monitoring Network started its operation in September 1994 recording ultraviolet (UVR) and Photosynthetic Available Radiation (PAR) at a frequency of once per minute, at four sites, throughout the entire year. Four spectroradiometers (GUV-511, Biospherical Instruments, Inc.) were installed at research centers separated by about 8–12 degrees of latitude, extending from the Subantarctic-Fueguian region to the Tropic of Capricorn. The instruments are located in populated areas ranging from 30,000 to 11 million people and with extremely different climate regimes and conditions of tropospheric pollution. Our ground-based data indicated that the irradiance increased steadily from south to north. This increase was also observed in the calculated daily doses of UV-B (280–320 nm); however, daily integrated values for UV-A (320–400 nm) and PAR (400–700 nm) were higher at mid-latitudes (Puerto Madryn, 42°47′S). A similar south-to-north increase was evident in the ratio of the energy at 305 nm and 340 nm wavelengths (with low 305/340 ratios indicating high total ozone column concentration), with low values at Ushuaia (55°01′S) and high values at Jujuy (24°10′S). However, the 305/340 ratios increased significantly over their normal spring values at two sites, Ushuaia and Puerto Madryn, for variable time periods during October-December. Our data suggest that the ozone hole was over South America extending to about 38°S for at least a week during October and about two weeks during November-December of the years of 1994 and 1995. However, it should be noted that the erythemal irradiance, in the area influenced by the ozone hole, was at all times lower than that in Buenos Aires and well below the value at Jujuy (tropical station). This study also indicates that when assessing the impact of solar UVR upon organisms, other variables such as cloud cover, solar zenith angle, day length, latitude, and atmospheric pollution should be considered in addition to total ozone column concentration.  相似文献   

19.
Warming permafrost in European mountains   总被引:3,自引:0,他引:3  
Here we present the first systematic measurements of European mountain permafrost temperatures from a latitudinal transect of six boreholes extending from the Alps, through Scandinavia to Svalbard. Boreholes were drilled in bedrock to depths of at least 100 m between May 1998 and September 2000. Geothermal profiles provide evidence for regional-scale secular warming, since all are nonlinear, with near-surface warm-side temperature deviations from the deeper thermal gradient. Topographic effects lead to variability between Alpine sites. First approximation estimates, based on curvature within the borehole thermal profiles, indicate a maximum ground surface warming of +1 °C in Svalbard, considered to relate to thermal changes in the last 100 years. In addition, a 15-year time series of thermal data from the 58-m-deep Murtèl–Corvatsch permafrost borehole in Switzerland, drilled in creeping frozen ice-rich rock debris, shows an overall warming trend, but with high-amplitude interannual fluctuations that reflect early winter snow cover more strongly than air temperatures. Thus interpretation of the deeper borehole thermal histories must clearly take account of the potential effects of changing snow cover in addition to atmospheric temperatures.  相似文献   

20.
Gases locked in hydrates or trapped beneath a gas hydrate cap within the earth are potential contributors to the greenhouse effect, and therefore both thermal conditions of and occurrences of the methane hydrates should be considered in the study of past climate change and of future global warming. The decomposition of methane hydrates triggered by an increase in near surface temperatures and the subsequent upward migration of released gases is occurring at present in the Beauffort-Mackenzie area of northern Canada. In addition to surface warming, the warming effect of the upward flow of the deep fluids, recharged in high elevation areas bordering the Alaska and Yukon coastal plain, may also be a factor in the release of methane directly from deeper buried hydrates in the fluid discharge zones. Any assessment of the total methane contribution to the atmosphere and the rate of the release requires a knowledge of the distribution, spatially and with depth, the temperature and composition of the gas hydrates. In this study the zones of methane hydrate stability are predicted by a thermal method and compared with the distribution of hydrates detected on well logs. An extensive hydrate prone layer extending to as deep as 1400±200 m over an area of 50,000 km2 is predicted by the thermal data and hydrate stability field. Comparison of the predicted maximum depths of methane hydrate stability with the maximum depths of hydrate occurrences in 52 wells shows general agreement in the areas of thick offshore and onshore permafrost. Differences in several areas of up to 400 m between the thermally predicted hydrate base and the deepest detected hydrates (detected hydrates are deeper than the predicted ones) can be explained by changes in gas composition. Otherwise low near-surface thermal gradients of approximately 15 mK/m to 20 mK/m (in comparison with observed deep thermal gradients of 25–40 mK/m) would be needed to explain the existence of deep hydrates in the area of the southern Mackenzie Delta trough and offshore north of 71° N latitude. Unfortunately there is no reliable industrial temperature observation from wells to support the latter. Such regional studies of the distribution of gas hydrates, including the stability of those deposits, form a crucial component of an assessment of the influence of gas hydrate formation and decomposition on the proportion of methane present in the earth's atmosphere. Current estimates suggest that between 10.E18 and 10.E21 tonnes of methane may be presently locked in gas hydrate deposits. To fully assess the total amount and the potential contribution to global warming, similar regional assessments are needed for each of the major areas of occurrence, especially in the circumpolar regions which are subject to the greatest increase in temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号