首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a Chandra image of the quasar, jet, and lobes of PKS 1354+195 (=4C 19.44). The radio jet is 18 arcsec long, and appears to be very straight. The length gives many independent spatial resolution elements in the Chandra image while the straightness implies that the geometrical factors are constant along the jet although their values are uncertain. We also have 4 frequency radio images with half to one arcsecond angular resolution, and use HST and Spitzer data to study the broad band spectral energy distributions. The X-ray and radio spectra are both consistent with a spectrum f ν ν −0.7 for the integrated jet. Using that spectral index, the model of inverse Compton scattering of electrons on the cosmic microwave background (IC/CMB) gives magnetic field strengths and Doppler factors that are relatively constant along the jet. Extended X-ray emission is evident in the direction of the otherwise unseen counter-jet. X-ray emission continues past the radio jet to the South, and is detected within both the southern and northern radio lobes.  相似文献   

2.
We have produced 22 VLBI images of the TeV blazar Markarian 421 at 11 epochs, including a Space VLBI observation with the HALCA satellite. We measure the speeds of the three innermost jet components to be 0.64±0.33, 0.48±0.09, and 0.06±0.09c (H0=65 km s−1 Mpc−1). Interpretation of these subluminal speeds in terms of the high Doppler factor demanded by the TeV observations is discussed.  相似文献   

3.
We have made VLA radio total intensity and polarisation observations in the A, B and C configurations at 1665, 1435, 1365 and 1295 MHz and in the B, C and D configurations at 8465 and 8415 MHz to study the environment of the powerful radio galaxy Hercules A. We have also made ROSAT PSPC and HRI X-ray observations to study the intracluster gas in the Hercules A cluster. We have mapped the Faraday rotation field with high resolution (1.′′42.5 h−1100 kpc for q0=0), and combined this with the X-ray data on the gas distribution in order to map the magnetic field of the cluster. We have found that Hercules A exhibits a strong Laing-Garrington effect: the western side of the radio emission is more depolarised than the eastern side. The X-ray observations have revealed an extended X-ray emission elongated along the radio galaxy axis and a weak nuclear component. The Hercules A cluster is a cooling flow cluster, which appears isothermal at large radii. Comparing the Faraday dispersion profile with the X-ray estimated density profile, we found that the magnetic field is decreasing with radius and we have estimated a central value of 3B0 (μG) 9. The estimated core electron density of n06.6×103 m−3 reveals a dense environment in which Hercules A is situated.  相似文献   

4.
We present an analysis of multi-epoch global VLBI observations of the Compact Symmetric Objects: 2352+495 and 0710+439 at 5 GHz. Analysis of data spread over almost two decades shows strong evidence for an increase in separation of the outer components of both sources at a rate of 0.2h−1c (for q=0.5 and H=100h km s−1Mpc−1). Dividing the overall sizes of the sources by their separation rates implies that these Compact Symmetric Objects have a kinematic age 104 years. These results (and those for other CSOs) strongly argue that CSOs are indeed very young sources that probably evolve into much larger classical doubles.  相似文献   

5.
We present a comparative analysis of 5 GHz VLA and 200 ks Chandra ACIS-I image. In the 5 GHz image the familiar jet and much weaker counterjet are seen, which bend as the jet propagates towards the hotspots. Furthermore, where the lobe detected in 5 GHz emission starts to interact with the jet, we see that the jet “threads”. In the 0.2–10 keV X-ray image we do not detect the jet, but do detect a relic of the counterjet. * This paper has previously been published in Astrophysics and Space Science, vol. 310:3–4.  相似文献   

6.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to γ∼30 and intrinsic luminosity up to ∼1026 W Hz−1. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ∼5×1013 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ∼2×1011 K, i.e., closer to equipartition.  相似文献   

7.
The VLBA has been used over a period of four years to study the internal motions within a sample of quasars and AGN. In most sources, features appear to propagate away from the central engine along a well collimated radio jet with apparent transverse velocities between zero and 10c, with some evidence for apparent accelerations and decelerations. The distribution of apparent velocity is not consistent with any simple ballistic model and appears to require either a spread in intrinsic velocity or a difference between the bulk velocity and pattern velocity. The dependence of apparent angular velocity with redshift is consistent with standard Friedmann world models. Further observations of a larger source sample, especially at large redshift may lead to meaningful constraints on world models.  相似文献   

8.
We present a comparative analysis of 5 GHz VLA and 200 ks Chandra ACIS-I image. In the 5 GHz image the familiar jet and much weaker counterjet are seen, which bend as the jet propagates towards the hotspots. Furthermore, where the lobe detected in 5 GHz emission starts to interact with the jet, we see that the jet “threads”. In the 0.2–10 keV X-ray image we do not detect the jet, but do detect a relic of the counterjet.  相似文献   

9.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3M yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales. * This paper has previously been published in Astrophysics and Space Science, vol. 310:3–4.  相似文献   

10.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3 M  yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.  相似文献   

11.
The search for non thermal radio emission from clusters of galaxies is a powerful tool to investigate the existence of magnetic fields on such large scale. Unfortunately, such observations are scarce thus far, mainly because of the very faint large scale radio emission expected in clusters of galaxies. In the present contribution we will first review the status of the radio observations of clusters of galaxies, carried out with the aim of detecting large scale radio emission.We will then focus on the large scale radio emission detected at 327 MHz and 610 MHz in the Coma cluster of galaxies. The features of the detected radio emission suggest that a magnetic field with an intensity of the order of ~ 10–7 Gauss must be present on a scale of about 2 Mpc (forH o = 100km s –1 Mpc –1). The morphology of the radio emission is similar to that of the most recent X-ray images derived with ROSAT, and follows the distribution of the galaxies in the cluster. All these pieces of information will be taken into account in the discussion on the possible origin of this large scale magnetic field.  相似文献   

12.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

13.
We present results from a Keck optical and near IR spectroscopic study of the giant emission line halos of the z>3 High Redshift Radio Galaxies (HiZRGs) 4C 41.17, 4C 60.07 and B2 0902+34. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s−1 and velocity shears consistent with rotation. The inner regions contain shocked, clumpy cocoons of gas closely associated with the radio lobes with disturbed kinematics and expansion velocities and/or velocity dispersions >1000 km s−1. We also find evidence for the ejection of chemically enriched material in 4C 41.17 up to a distance of ∼60 kpc along the radio-axis. We infer that these HiZRGs are undergoing a final jet-induced phase of star formation with the ejection of most of their interstellar medium before evolving to become “red and dead” Elliptical galaxies.  相似文献   

14.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

15.
A new general relativistic magnetohydrodynamics (GRMHD) code “RAISHIN” used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, c/2, on the KH instability associated with a relativistic, γ=2.5, jet spine-sheath interaction. In the simulations sound speeds up to and Alfvén wave speeds up to ∼0.56c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from c/2 sheath speeds is found.  相似文献   

16.
We present diagrams depicting the expected inter-dependences of two key kinematical parameters of radio knots in the parsec-scale jets of blazars, deduced from VLBI observations. The two parameters are the apparent speed (υ app = app) and the effective Doppler boosting factor (δ eff) of the relativistically moving radio knot. A novel aspect of these analytical computations of β-δ diagrams is that they are made for parsec-scale jets having a conical shape, with modest opening angles (ω up to 10°), in accord with the VLBI observations of the nuclei of the nearest radio galaxies. Another motivating factor is the recent finding that consideration of a conical geometry can have important implications for the interpretation of a variety of radio observations of blazar jets. In addition to uniform jet flows (i.e., those having a uniform bulk Lorentz factor, Γ), computational results are also presented for stratified jets where an ultra-relativistic central spine along the jet axis is surrounded by a slower moving sheath, possibly arising from a velocity shear.  相似文献   

17.
Cygnus A     
Cygnus A was the first hyper-active galaxy discovered, and it remains by far the closest of the ultra-luminous radio galaxies. As such, Cygnus A has played a fundamental role in the study of virtually all aspects of extreme activity in galaxies. We present a review of jet theory for powering the double-lobed radio emitting structures in powerful radio galaxies, followed by a review of observations of Cygnus A in the radio, optical, and X-ray relevant to testing various aspects of jet theory. Issues addressed include: jet structure from pc- to kpc-scales, jet stability, confinement, composition, and velocity, the double shock structure for the jet terminus and the origin of multiple radio hotspots, the nature of the filamentary structure in the radio lobes, and the hydrodynamic evolution of the radio lobes within a dense cluster atmosphere, including an analysis of pressure balance between the various gaseous components. Also discussed are relativistic particle acceleration and loss mechanisms in Cygnus A, as well as magnetic field strengths and geometries both within the radio source, and in the intracluster medium. We subsequently review the classification, cluster membership, and the emission components of the Cygnus A galaxy. The origin of the activity is discussed. Concentrating on the nuclear regions of the galaxy, we review the evidence for an obscured QSO, also given the constraints on the orientation of the radio source axis with respect to the sky plane. We present an overview of models of central engines in AGN and observations of Cygnus A which may be relevant to testing such models. We conclude with a brief section concerning the question of whether Cygnus A is representative of powerful high redshift radio galaxies. Received October 10, 1995  相似文献   

18.
In this paper, we collect the redshift, bolometric luminosity, the full- width at half maximum of the Hβ emission line, the monochromatic luminosity at 5100 Å and the radio loudness for the sample of 117 quasars, including 20 radio-quiet quasars (RQQs) and 97 radio-loud quasars (RLQs). With the reverberation mapping method we calculate the black hole mass and Eddington ratio for this sample, as well as the radio luminosity from the total 5 GHz ?ux density. By analyzing the correlations among them, we obtain the following conclusions: (1) The black hole mass has weak correlations with the bolometric luminosity, radio loudness and radio luminosity for the RQQs, and has strong correlations with the bolometric luminosity, radio loudness and radio luminosity for the RLQs; (2) For the RQQs, the bolometric luminosity has weak correlations with the radio luminosity and 5 100 Å monochromatic luminosity, and for the RLQs, the bolometric luminosity has strong correlations with the radio luminosity and 5 100 Å monochromatic luminosity; (3) The RQQs and RLQs differ in the distributions of the black hole mass, emission line width and Eddington ratio. Based on these results, we suggest: the difference of emission line width between RQQs and RLQs is probably caused by the difference of black hole mass; the fundamental difference between RQQs and RLQs is caused by the difference of their intrinsic physical nature; the black hole mass, black hole spin, Eddington ratio, and host galaxy morphology are the important parameters to explain the origin of radio loudness and the double-peaked distribution; and the radio jet is closely related with the accretion rate of disk.  相似文献   

19.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift rangez ≃ 0.2 toz ≃ 2.2. The sample, matched in the optical luminosity—redshift(M B—z) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of ESfOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOV amplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOV duty cycle of the AGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs (1029 + 329 & 1252 + 020) in our sample which has yielded a 5 GHz detection in one of them (1252 + 020;S 5GHZ ≃ 1 mJy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号