首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

2.
3.
The spacecraft ISEE-3 was launched in August 1978 and subsequently placed in orbit about the Sun-Earth L1 libration point where it continuously monitored the particles and fields in interplanetary space until mid-1982. The ISEE-3 Energetic Proton Anisotropy Spectrometer makes 3-dimensional intensity measurements of 35–1600 keV, Z ? 1 ions. This data is used in conjunction with simultaneous solar wind plasma and magnetic field data from the same spacecraft to study the properties of ions in interaction regions lying at the leading edges of nine corotating high speed solar wind streams observed during October 1978–July 1979. Seven streams have an enhancement of ? 300 keV ions in the compressed fast stream plasma between the stream interface and interaction region trailing edge. These enhancements are associated with plasma heating to above 3 × 105 K, have soft spectra (spectral index ~ 4.5?6.0) and in five cases show anti-solar streaming in the solar wind frame.  相似文献   

4.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

5.
R. P. Kane 《Solar physics》2014,289(7):2669-2675
When a Coronal Mass Ejection (CME) is ejected by the Sun, it reaches the Earth orbit in a modified state and is called an ICME (Interplanetary CME). When an ICME blob engulfs the Earth, short-scale cosmic-ray (CR) storms (Forbush decreases, FDs) occur, sometimes accompanied by geomagnetic Dst storms, if the B z component in the blob is negative. Generally, this is a sudden process that causes abrupt changes. However, sometimes before this abrupt change (FD) due to strong ICME blobs, there are slow, small changes in interplanetary parameters such as steady increases in solar wind speed V, which are small, but can last for several hours. In the present communication, CR changes in such an event are illustrated in the period 1?–?3 October 2013, when V increased steadily from ~?200 km?s?1 to ~?400 km?s?1 during 24 hours on 1 October 2013. The CR intensities decreased by 1?–?2 % during some hours of this 24-hour interval, indicating that CR intensities do respond to these weak but long-lasting increases in interplanetary solar wind speed.  相似文献   

6.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

7.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

8.
A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~?15?R . The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15?–?240?R ), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.  相似文献   

9.
We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998?–?2012 and 1975?–?1983, respectively. The data mainly belong to solar cycles 23 (1996?–?2008) and 21 (1976?–?1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance (D), which is defined using the Kullback–Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.  相似文献   

10.
The Solar Wind Energy Flux   总被引:1,自引:0,他引:1  
The solar-wind energy flux measured near the Ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10?%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high-speed solar wind (V SW>700?km?s?1) has the same mean energy flux as the slower wind (V SW<700?km?s?1), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.  相似文献   

11.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2014,289(6):2157-2175
We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast (V SOHO?V bg>500 km?s?1), 25 moderate (0 km?s?1V SOHO?V bg≤500 km?s?1), and 6 slow (V SOHO?V bg<0 km?s?1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km?s?1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=?γ 2(V?V bg)|V?V bg| is more appropriate than a linear one a=?γ 1(V?V bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=?2.07×10?12(V?V bg)|V?V bg|?4.84×10?6(V?V bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km?s?1V?V bg≤2300 km?s?1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with V?V bg>2300 km?s?1.  相似文献   

12.
Nearly 1000 magnetopause crossings from HEOS-2, HEOS-1, OGO-5 and 5 IMP space-craft covering most of the northern and part of the southern dayside and near-Earth tail magnetopause (X >?15 RE) have been used to perform a detailed study of the three-dimensional shape and location of the magnetopause. The long-term influence of the solar wind conditions on the average magnetopause geometry has been reduced by normalising the radial distances of the observed magnetopause crossings to an average dynamical solar wind pressure. Best-fit ellipsoids have been obtained to represent the average magnetopause surface in geocentric solar ecliptic (GSE) and (as a function of tilt angle) in solar magnetic (SM) coordinates. Average geocentric distances to the magnetopause for the 1972–1973 solar wind conditions (density 9.4 cm?3, velocity 450 km s?1) are 8.8 RE in the sunward direction, 14.7 RE in the dusk direction, 13.4 RE in the dawn direction and 13.7 RE in the direction normal to the ecliptic plane. The magnetopause surface is tilted by 6.6° ± 2° in a direction consistent with that expected from the aberration effect of the radial solar wind. Our data suggest that the solar wind plasma density and the interplanetary magnetic field (IMF) orientation affect the distance to the polar magnetopause, larger distances corresponding to higher plasma density and southward fields. Our best-fit magnetopause surface shows larger geocentric distances than predicted by the model of Choe et al. [Planet Space Sci. 21, 485 (1973).] normalised to the same solar wind pressure.  相似文献   

13.
A consistent study of the solar wind has been extended to a wide region of interplanetary space, up to distances from the Sun R ? 90 R s . Experiments are carried out with the radio telescopes of the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev physical Institute, Russian Academy of Sciences): DKR-1000 (λ ≈ 2.7–2.9 m) and RT-22 (λ ≈ 1.35 cm), respectively. The radio-wave scattering characteristics, the scattering angle θ(R) and the scintillation index m(R), are studied. The formation of a steady supersonic solar wind is associated with a sequence of four stages whose scale in different solar wind streams changes within the range 10–23 R s , depending on the initial stream speed. These circumstances should be taken into account when predicting the state of the near space using data on the solar wind in regions of the interplanetary medium close to the Sun.  相似文献   

14.
The transport of energy in space plasmas, especially in the solar wind, is far from being understood. Measuring the temperature of the electrons and their non-thermal properties is essential to understand the transport properties in collisionless plasmas. Quasi-thermal noise spectroscopy is a reliable tool for measuring the electron temperature accurately since it is less sensitive to the spacecraft perturbations than particle detectors. We apply this method to Ulysses radio data obtained during the first pole-to-pole fast latitude scan in the high-speed solar wind, using a kappa function to describe the electron velocity distribution. We deduce the variations with heliocentric distance between 1.5 and 2.3 AU in the fast solar wind at high latitude in terms of three fitting parameters: the electron density varies as n e??R ?1.96±0.08, the electron temperature as T e??R ?0.53±0.15, and the kappa index of the distribution remains constant at ??=2.0±0.2. These observations agree with the predictions of the exospheric theory.  相似文献   

15.
We study the velocity-space quasi-linear diffusion of the solar wind protons driven by oblique Alfvén turbulence at proton kinetic scales. Turbulent fluctuations at these scales possess the properties of kinetic Alfvén waves (KAWs) that are efficient in Cherenkov-resonant interactions. The proton diffusion proceeds via Cherenkov kicks and forms a quasi-linear plateau – the nonthermal proton tail in the velocity distribution function (VDF). The tails extend in velocity space along the mean magnetic field from 1 to (1.5?–?3) V A, depending on the spectral break position, on the turbulence amplitude at the spectral break, and on the spectral slope after the break. The most favorable conditions for the tail generation occur in the regions where the proton thermal and Alfvén velocities are about equal, V Tp/V A≈1. The estimated formation times are within 1?–?2 h for typical tails at 1 AU, which is much shorter than the solar wind expansion time. Our results suggest that the nonthermal proton tails, observed in situ at all heliocentric distances >?0.3 AU, are formed locally in the solar wind by the KAW turbulence. We also suggest that the bump-on-tail features – proton beams, often seen in the proton VDFs, can be formed at a later evolutional stage of the nonthermal tails by the time-of-flight effects.  相似文献   

16.
The speed [v(R)] of coronal mass ejections (CMEs) at various distances from the Sun is modeled (as proposed by Vr?nak and Gopalswamy in J. Geophys. Res. 107, 2002, doi: 10.1029/2001/JA000120 ) by using the equation of motion a drag=γ(v?w) and its quadratic form a drag=γ(v?w)|v?w|, where v and w are the speeds of the CME and solar wind, respectively. We assume that the parameter γ can be expressed as γ=αR β , where R is the heliocentric distance, and α and β are constants. We extend the analysis of Vr?nak and Gopalswamy to obtain a more detailed insight into the dependence of the CME Sun–Earth transit time on the CME speed and the ambient solar-wind speed, for different combinations of α and β. In such a parameter-space analysis, the results obtained confirm that the CME transit time depends strongly on the state of the ambient solar wind. Specifically, we found that: i) for a particular set of values of α and β, a difference in the solar-wind speed causes larger transit-time differences at low CME speeds [v 0], than at high v 0; ii) the difference between transit times of slow and fast CMEs is larger at low solar-wind speed [w 0] than at high w 0; iii) transit times of fast CMEs are only slightly influenced by the solar-wind speed. The last item is especially important for space-weather forecasting, since it reduces the number of key parameters that determine the arrival time of fast CMEs, which tend to be more geo-effective than the slow ones. Finally, we compared the drag-based model results with the observational data for two CME samples, consisting of non-interacting and interacting CMEs (Manoharan et al. in J. Geophys. Res. 109, 2004). The comparison reveals that the model results are in better agreement with the observations for non-interacting events than for the interacting events. It was also found that for slow CMEs (v 0<500 km?s?1), there is a deviation between the observations and the model if slow-wind speeds (≈?300?–?400 km?s?1) are taken for the model input. On the other hand, the model values and the observed data agree for both the slow and the fast CMEs if higher solar-wind speeds are assumed. It is also found that the quadratic form of the drag equation reproduces the observed transit times of fast CMEs better than the linear drag model.  相似文献   

17.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   

18.
Takakura  T.  Degaonkar  S. S.  Ohki  K.  Kosugi  T.  Enome  S. 《Solar physics》1983,83(2):379-384
New solar wind data from Helios-2 are used to study, in a statistical fashion, the relation between proton number density n, flow speed u and heliocentric distance r. It is shown that the average of nu 2 r 2 does not depend on flow speed nor on distance, verifying the previously established invariance of momentum flux density (mnu2) carried by the solar wind. Averages of mnu2 from different spacecraft do not show correlation with the solar cycle. Rather, the close agreement (to within 1.8%) of values from Helios-1 and Helios-2 suggests that the momentum flux density carried by the solar wind may be also constant during the solar cycle.  相似文献   

19.
《Planetary and Space Science》2007,55(12):1741-1756
The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.  相似文献   

20.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号