首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We study the impact of ionospheric disturbances on the Earth’s environment caused by the solar events that occurred from 20 April to 31 May 2010, using observations from the Mexican Array Radio Telescope (MEXART). During this period of time, several astronomical sources presented fluctuations in their radio signals. Wavelet analysis, together with complementary information such as the vertical total electron content (vTEC) and the Dst index, were used to identify and understand when the interplanetary scintillation (IPS) could be contaminated by ionospheric disturbances (IOND). We find that radio signal perturbations were sometimes associated with IOND and/or IPS fluctuations; however, in some cases, it was not possible to clearly identify their origin. Our Fourier and wavelet analyses showed that these fluctuations had frequencies in the range ≈?0.01 Hz?–?≈?1.0 Hz (periodicities of 100 s to 1 s).  相似文献   

3.
The results of a series of 24-hour observations of radio-source interplanetary and ionospheric scintillation performed on April 4–10, 2006, at the Pushchino Radio Astronomy Observatory are presented. The observations were carried out with the Large Phased Array radio telescope of the Lebedev Institute of Physics, Russian Academy of Sciences, at a frequency of 110 MHz. The scintillating fluxes of all radio sources that fall within a field of sky between declinations +28° and +31° were automatically recorded applying eight beams of the reception pattern operating simultaneously. All of the sources with flux densities of 0.2 Jy or higher were detected. The structure functions of the flux fluctuations were measured for time shifts 1 and 10 s, which characterize the interplanetary (1 s) and ionospheric (10 s) scintillation, respectively. The mean scintillation index m IPP (on a characteristic time scale of 1 s) of an ensemble of radio sources located within a sky band 4° wide in declination and 1 h wide in right ascension was measured as the parameter that characterizes the interplanetary plasma. Diurnal variations of the interplanetary scintillation index were determined. The maximum m IPP value at daytime equals 0.3, and the minimum value at nighttime equals 0.10. Weak interday variations of the mean daytime and nighttime scintillation indices were detected. The ionospheric scintillation indices m Ion are small compared to m IPP at daytime, but m Ion ? m IPP at nighttime. On the whole, both the interplanetary plasma and ionosphere were quiet during the observations.  相似文献   

4.
The LOw Frequency ARray (LOFAR) is a next-generation radio telescope which uses thousands of stationary dipoles to observe celestial phenomena. These dipoles are grouped in various ‘stations’ which are centred on the Netherlands with additional ‘stations’ across Europe. The telescope is designed to operate at frequencies from 10 to 240 MHz with very large fractional bandwidths (25?–?100 %). Several ‘beam-formed’ observing modes are now operational and the system is designed to output data with high time and frequency resolution, which are highly configurable. This makes LOFAR eminently suited for dynamic spectrum measurements with applications in solar and planetary physics. In this paper we describe progress in developing automated data analysis routines to compute dynamic spectra from LOFAR time–frequency data, including correction for the antenna response across the radio frequency pass-band and mitigation of terrestrial radio-frequency interference (RFI). We apply these data routines to observations of interplanetary scintillation (IPS), commonly used to infer solar wind velocity and density information, and present initial science results.  相似文献   

5.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

6.
Daily observations of a grid of scintillating sources during the period January–August 1971 indicate that enhancements in scintillation index which cannot be related to corotating structure, are related to interplanetary shock waves associated with solar flares. Only 3 enhancements in scintillation index associated with shock waves were observed during the eight months period of observations.  相似文献   

7.
We have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd, solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was 1016 gm and 1033 erg respectively,3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multicomponent model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.  相似文献   

8.
Day to day observations of interplanetary scintillation on ten strongly scintillating radio sources over a period of twelve months show that the power spectrum of the small scale irregularities flattens considerably at temporal frequencies ν < 0·5 Hz. This flattening defines a scale which increases uniformly between 0·1 and 1·0 a.u. from the Sun. The implication of this result will be discussed.  相似文献   

9.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

10.
We use dual-site radio observations of interplanetary scintillation (IPS) with extremely long baselines (ELB) to examine meridional flow characteristics of the ambient fast solar wind at plane-of-sky heliocentric distances of 24?–?85 solar radii (R ). Our results demonstrate an equatorwards deviation of 3?–?4° in the bulk fast solar wind flow direction over both northern and southern solar hemispheres during different times in the declining phase of Solar Cycle 23.  相似文献   

11.
We carried out intra-day variability (IDV) observations from August 2005 to January 2010 with the Urumqi 25 m radio telescope for a dozen IDV sources including the quasar 0917+624. This target exhibited pronounced centimeter-band, intra-day variability during the 1980s–1990s, but its strong IDV phase ceased in 2000. The source showed no IDV in the majority of the Urumqi observing sessions, although weak IDV activity was detected in some. Multifrequency UMRAO data for 0917+624 show that the spectral index is steeper during the weak and non-IDV phases than during the strong IDV phase, supporting the idea that the size of the scintillating component may be enlarged in the weak/non IDV phases.  相似文献   

12.
The Mexican Array Radio Telescope (MEXART) consists of a 64×64 (4096) full-wavelength dipole antenna array, operating at 140 MHz, with a bandwidth of 2 MHz, occupying about 9660 square meters (69 m × 140 m) ( http://www.mexart.unam.mx ). This is a dedicated radio array for Interplanetary Scintillation (IPS) observations located at latitude 19°48′N, longitude 101°41′W. We characterize the performance of the system. We report the first IPS observations with the instrument, employing a Butler Matrix (BM) of 16×16 ports, fed by 16 east?–?west lines of 64 dipoles (1/4 of the total array). The BM displays a radiation pattern of 16 beams at different declinations (from ?48, to +88 degrees). We present a list of 19 strong IPS radio sources (having at least 3σ in power gain) detected by the instrument. We report the power spectral analysis procedure of the intensity fluctuations. The operation of MEXART will allow us a better coverage of solar wind disturbances, complementing the data provided by the other, previously built, instruments.  相似文献   

13.
The observations of the solar radio emission on September 11, 2001, with the RATAN-600 radio telescope (southern sector) at four centimeter wavelengths (1.92, 2.24, 2.74, and 3.21 cm) revealed synchronous brightenings in solar radio sources. These were identified on the solar photosphere with active regions that were spaced up to ~106 km apart (AR 9608 and AR 9616). We discuss manifestations of the possible mechanisms of synchronous brightenings in solar sources in a narrow microwave spectral band. The significant linear correlation (ρc = 0.84–0.92) between the relative fluxes of AR 9610 and AR 9608 at 1.92 and 2.24 cm and the significant linear correlation (ρc = 0.65–0.84) between the relative fluxes of AR 9606 and AR 9608 at 3.21 cm in a two-hour interval of observations are indicative of the interconnection between these active regions not only during flares and bursts, but also in the periods of their absence. This confirms the existence of a large-scale temporal component in the dynamics of the radio flux variations for these active regions. We found a difference between the temporal variations of the radio emission from the halo and the solar radio sources under consideration. The times of increase in the total solar soft X-ray (0.5–4.0 Å, 1.0–8.0 Å; GOES 8, GOES 10) flux are shown to coincide with the times of increase in the fluxes from the solar radio sources at short centimeter wavelengths.  相似文献   

14.
In this paper, we review the results of interplanetary scintillation (IPS) observations made with the legacy system of the Ooty Radio Telescope (ORT) and compare them with the possibilities opened by the upgraded ORT, the Ooty Wide Field Array (OWFA). The stability and the sensitivity of the legacy system of ORT allowed the regular monitoring of IPS on a grid of large number of radio sources and the results of these studies have been useful to understand the physical processes in the heliosphere and space weather events, such as coronal mass ejections, interaction regions and their propagation effects. In the case of OWFA, its wide bandwidth of 38 MHz, the large field-of-view of ~27° and increased sensitivity provide a unique capability for the heliospheric science at 326.5 MHz. IPS observations with the OWFA would allow one to monitor more than 5000 sources per day. This, in turn, will lead to much improved studies of space weather events and solar wind plasma, overcoming the limitations faced with the legacy system. We also highlight some of the specific aspects of the OWFA, potentially relevant for the studies of coronal plasma and its turbulence characteristics.  相似文献   

15.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

16.
It is proposed to use the coefficient of asymmetry of the distribution function of fluctuations of a scintillating source flux density as a parameter that characterizes interplanetary turbulent plasma. It is demonstrated that this parameter can be measured with a differential method and that its informative capacity is equivalent to that of the source scintillation index. A series of test observations of scintillations was performed with the Large Phased Array antenna of the Lebedev Institute of Physics, Russian Academy of Sciences, simultaneously with measurements of the source scintillation indices and coefficients of asymmetry. Comparative analysis of the measured quantities showed that the coefficient of asymmetry within a numerical coefficient equals the source scintillation index, normalized to the flux density of the scintillating component. The coefficient of asymmetry makes it possible to restore scintillation indices when the radio sources are weak and it is difficult to measure their mean flux densities, and, hence, it enlarges the number of observable scintillating sources and makes the exploration of interplanetary plasma by means of the mapping of scintillation indices more efficient.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 375–380.Original Russian Text Copyright © 2005 by Shishov, Tyul’bashev, Artyukh, Subaev, Chashei, Chernikov.  相似文献   

17.
We study a solar flare that occurred on 10 September 2002, in active region NOAA 10105, starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in Hα. Solar Submillimeter Telescope observations, in addition to microwave data, give a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-ray observations, and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imager data are used to identify the locations of X-ray sources at different energies, and to determine the X-ray spectrum, while ultraviolet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources. In the 212 GHz data, which are used to estimate the radio-source position, a single compact source is seen, displaced by 25″ from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and we combine this analysis with that of hard X-rays to understand the dynamics of the accelerated particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft–hard–soft behavior.  相似文献   

18.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

19.
The multi-antenna scintillation method of measuring the solar-wind velocity has been very effective, particularly near the Sun and at high heliographic latitudes where direct measurements are rare or non-existent. However, scintillation observations inherently involve an LOS integration. Several methods have been used to deal with this problem, but they all require the basic assumption that contributions from different parts of the LOS add linearly. This assumption is valid for weak scintillations where the Born approximation holds, but it is not correct for strong scintillations. In this article we compare simultaneous observations of the same radio source, and therefore the same solar wind, at radio wavelengths of 32 cm and 92 cm. The 32-cm observations at the European Incoherent Scatter Radar (EISCAT) were made in weak-scattering and those at 92 cm at the Solar-Terrestrial Environment Laboratory (STEL) were made in strong-scattering mode. The results showed no significant bias in velocity caused by strong scattering, confirming that the LOS inversion techniques can be extended into the strong-scattering regime.  相似文献   

20.
The recently refurbished Ooty Radio Telescope in southern India was used in a two-month campaign of interplanetary scintillation (IPS) observations in collaboration with the Cambridge IPS array in England during April–May 1992. The unique feature of this campaign was that, for the first time, scintillation enhancements were predicted in real time by observing solar events on 7–8 May, 1992 and then detected at both Ooty and Cambridge. Also, for the first time, high spatial resolution ( 100 sources sr–1) solar wind all-sky velocity maps were obtained at Ooty. Good consistency is found between the IPS observations from both observatories andin-situ shocks detected at Earth by IMP-8.Yohkoh soft X-ray images were used to infer the generation of a coronal mass ejection on 7 May, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号