首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale coronal structures (helmet streamers) observed in the white-light corona during total solar eclipses and/or with ground-based coronagraphs are mostly located only above quiescent types of prominences. These helmet streamers are maintained due to the magnetic fields of the Sun. Time–latitudinal distribution of prominences during a solar cycle, however, shows both the poleward and equatorward migrations, similar to the 530.3 nm emission corona (the green corona) intensities. Distribution of observed coronal helmet streamers during total solar eclipses, enlarged with the helmet streamers as were obtained by the ground-based coronagraph observations, are compared with the heliographic distribution of prominences and the green corona intensities for the first time. It is shown that the distribution of above-mentioned helmet streamers, reflects – roughly – the time–latitudinal distribution of prominences and emission corona branches, and migrates together with them over a solar cycle.  相似文献   

2.
The total solar irradiance varies over a solar cycle of 11 years and maybe over cycles of longer periods. Is the solar diameter variable over time too? A discussion of the solar diameter and its variations must be linked to the limb darkening function (LDF). We introduce a new method to perform high-resolution astrometry of the solar diameter from the ground, through the observations of eclipses, using the luminosity evolution of Baily’s bead and the profile of the lunar edge available from satellite data. This approach unifies the definition of the solar limb with the inflection point of LDF for eclipses and drift-scan or heliometric methods. The method proposed is applied for the videos of the eclipse on 15 January 2010 recorded in Uganda and in India. The result suggests reconsidering the evaluations of the historical eclipses observed with the naked eye.  相似文献   

3.
Solar diameter measurements have been made nearly continuously through different techniques for more than three centuries. They were obtained mainly with ground-based instruments except for some recent estimates deduced from space observations. One of the main problems in such space data analysis is that, up to now, it has been difficult to obtain an absolute value owing to the absence of an internally calibrated system. Eclipse observations provide a unique opportunity to give an absolute angular scale to the measurements, leading to an absolute value of the solar diameter. However, the problem is complicated by the Moon limb, which presents asphericity because of the mountains. We present a determination of the solar diameter derived from the total solar eclipse observation in Turkey and Egypt on 29 March 2006. We found that the solar radius carried back to 1 AU was 959.22±0.04 arcsec at the time of the observations. The inspection of the compiled 19 modern eclipses data, with solar activity, shows that the radius changes are nonhomologous, an effect that may explain the discrepancies found in ground-based measurements and implies the role of the shallow subsurface layers (leptocline) of the Sun.  相似文献   

4.
We measured the brightness of the white light corona at the total solar eclipses on 1 August 2008 and 22 July 2009, when solar activity was at its lowest in one hundred years. After careful calibration, the brightness of the corona in both eclipses was evaluated to be approximately 0.4×10?6 of the total brightness of the Sun, which is the lowest level ever observed. Furthermore, the total brightness of the K+F-corona beyond 3R in both eclipses is lower than some of the previous measurements of the brightness of the F-corona only. Our accurate measurements of the coronal brightness provide not only the K-corona brightness during a period of very low solar activity but also a reliable upper limit of the brightness of the F-corona.  相似文献   

5.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously through a single objective of the telescope as the coronal radiation passed through three polarizers (whose transmission directions were turned 0°, 60°, and 120° in the chosen direction); one image was obtained without a polarizer. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained the distributions of polarization brightness, K-corona brightness, the degree of K-corona polarization and the total polarization degree; the polarization direction, depending on the latitude and radius in the plane of the sky, was also obtained. We calculated the radial distributions of electron density depending on the latitude. The properties of all these distributions were compared for different coronal structures. We determined the temperature of the coronal plasma in different coronal structures assuming hydrostatic equilibrium.  相似文献   

6.
7.
明代中期兴起的地方志和私人著作,记载了许多天象事件,日食记录是其中重要内容.地方性日食记录的精华集中在对日全食现象的生动描述,地方志记录的最大价值是一次日全食的多个见全食点.明代中国东部地区发生了15次中心日食.明后期的10次中,8次都有大量的地方性记录.讨论了明代地方性日食记录的各种特点,并重点展示了这8次日全食在全国各地的观测地点分布以及对日全食景象的生动描述.  相似文献   

8.
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.  相似文献   

9.
White-light observations of the total solar eclipse on 13 November 2012 were made at two sites, where the totality occurred 35 min apart. The structure of the corona from the solar limb to a couple of solar radii was observed with a wide dynamic range and a high signal-to-noise ratio. An ongoing coronal mass ejection (CME) and a pre-CME loop structure just before the eruption were observed in the height range between 1?–?2 R. The source region of CMEs was revealed to be in this height range, where the material and the magnetic field of CMEs were located before the eruption. This height range includes the gap between the extreme ultraviolet observations of the low corona and the spaceborne white-light observations of the high corona, but the eclipse observation shows that this height range is essential for the study of CME initiation. The eclipse observation is basically just a snapshot of CMEs, but it indicates the importance of a continuous coverage of CME observations in this height range in the future.  相似文献   

10.
The inner white-light corona (up to 2 solar radii) can only be observed during total solar eclipses. New mathematical methods of the corona image processing and digital photo cameras or CCD cameras allow us to detect very faint structures (of a few arcseconds) in this part of the corona, even from images taken with relatively small telescopes (1–2 meters in the focal length). In the present paper we will discuss such structures as observed during the last few solar eclipses, mainly those of 2001 and 2006. Obtained results show that the white-light corona is highly structured not only in the sense of a variety of different types of its classical “objects”, e.g., polar plumes, helmet streamers, threadlike streamers, etc, but also within these objects themselves. Voids, loops, radial and non-radial threads, and other yet-undefined dark structures (“empty space”?) are well visible especially inside helmet streamers. This strongly indicates that the classical picture of the corona characterized by a hydrostatic distribution of density and temperature is no longer a sufficient assumption. It is magnetic forces that play a dominant role in shaping and structuring this part the corona. Given a remarkable similarity between the EUV corona as observed by SOHO and the white-light corona observed by us during the above-mentioned eclipses up to two solar radii. We suggest that the “missing” observations of the white-light corona should be replaced by those of the EUV one. Moreover, the last eclipse’s observations also indicate that the knots of some prominences extend well into the white-light corona. So, the next total eclipses of the Sun, of 1 August 2008 and 22 July 2009, offer an excellent opportunity for preparing joint observations for space-borne and ground-based eclipse teams.  相似文献   

11.
We present recent observations of the plasma parameters in coronal holes at the origin of the fast solar wind and in the interplanetary medium. A model based on the heat conductivity law in a dilute plasma shows the coherency of the electron and proton temperature observations from coronal holes to the interplanetary medium. These new observations are severe constraints for any model of the expansion of the fast solar wind. We discuss why and how non-equilibrium multispecies Fokker-Planck approach must be developed and present a generalized Grad's solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The diameter of the Sun may be measured at the time of a solar eclipse. We have performed an exhaustive search of the astronomical literature to find all existing observations of solar eclipses suitable for this purpose. We have also taken new observations by new techniques. We have undertaken a project to reduce them systematically, and in an automated, self-consistent way. This will produce determinations of the solar radius at the times of solar eclipses from 1715 to the present. Re-reduction, using newer ephemerides, of observations made in 1984 shows that the component of the residuals caused by the ephemeris is substantially reduced. This paper summarizes the research plan, outlines the detailed astronomical features included in the calculations, and presents the results available.  相似文献   

13.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会.日食射电观测在太阳射电物理的发展上起过重要的作用.文中对日食射电观测的若干重要因素作了介绍和分析.日食射电观测在我国太阳射电天文发展上也起了重要作用.文中简要介绍了在我国组织观测的1958年、1968年、1980年及1987年的太阳射电日食观测及其主要结果.  相似文献   

14.
太阳是与地球关系最为密切的天体.发生在日面上的剧烈爆发性活动可能对人类的生存环境产生巨大影响甚至是灾难性后果.包含太阳耀斑、暗条爆发和日冕物质抛射在内的太阳爆发活动是同一物理过程的不同表现形式,其能量来源于爆发前储存在日冕中的磁场自由能.因此,了解日冕磁场的3维结构是理解太阳爆发的触发机制以及活动区的稳定性等现象的前提.由于观测技术限制,目前尚无法对日冕磁场进行常规观测,因此发展了多种利用可常规观测的光球磁场来重建日冕磁场的方法.主要评述近10 yr来各种日冕磁场重建方法在研究太阳爆发活动中的应用.  相似文献   

15.
Pishkalo  Mykola I. 《Solar physics》2011,270(1):347-363
The photometrical flattening index of the solar corona a+b is defined according to Ludendorff. In this paper we have investigated how the flattening index varies with respect to the phase of solar activity and the sunspot number. We have compiled 170 values of the flattening index using the data on 60 total solar eclipses from 1851 to 2010. We have found that the flattening index takes values from 0 to 0.4, and is anticorrelated with solar activity. The value of the flattening index at the beginning of solar cycle 24 was used as a precursor to forecast the amplitude of the cycle. It was found that the amplitude of solar cycle 24 will be about 95 in terms of the smoothed monthly sunspot numbers.  相似文献   

16.
A coronal streamer was observed by the white light coronagraph on Skylab during 5 successive limb passages between 1 June, 1973 and 6 August, 1973. The Skylab data give independent measures of coronal brightness and polarization, as functions of time. These permit the distinction between changes in the coronal streamer's appearance due to solar rotation and actual structural changes. The streamer's visual appearance changed slightly between successive limb passages indicating that it was not a steady state feature. Measurements of the streamer's latitude, brightness, and polarization during 3 east limb passages show that: (1) the streamer's axis migrated southward from 25° N at first east limb passage to 11° N at second east limb passage to 8° N latitude at third east limb passage; (2) the streamer's mass (and mass gradient with height), varied by between 20 and 50% from one east limb passage to the next; (3) the streamer's longitudinal extent was also observed to be less on successive east limb passages; and (4) mass changes (distinct from coronal transients) occurring over hours were detected during at least two limb passages. Comparison of the outer coronal observations with observations from lower in the solar atmosphere indicate that the streamer was associated with a complex of solar activity consisting of active regions and filaments. This complex of activity shifted southward by the same amount as the streamer. The variations detected in the streamer preclude the detailed determination of its three-dimensional structure.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
From observations of the solar white-light corona at 65 eclipses from 1851 to 2015 we confirm earlier findings that the flattening index of the white-light corona depends on the phase, rather than the magnitude of solar cycles, which is in contrast with behavior of other major solar activity indices like the sunspot number, the 2800 MHz radio flux, etc. This indicates that mechanisms responsible for creation and distribution of helmet streamers, the most essential coronal structures influencing the flattening index, could be of different magnetic nature from those of other manifestations of solar surface activity.  相似文献   

18.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

19.
Based on observations of polar plume kinematics in the white-light corona during the total solar eclipse in 2006, the images obtained during multi-station observation of the eclipses of 2006, 2008, 2009 and 2010 were analysed. Several polar plumes showing similar kinematics were identified. The speeds of these dynamic features were found by comparing images obtained at different times along the path of totality. A possible connection with erupting spicules and macrospicules is discussed.  相似文献   

20.
Coronal plumes, which extend from solar coronal holes (CH) into the high corona and??possibly??into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions. More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on ??Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes?? to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号