首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light, image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.  相似文献   

2.
As part of the overall ground-based calibration of the Helioseismic and Magnetic Imager (HMI) instrument an extensive set of polarimetric calibrations were performed. This paper describes the polarimetric design of the instrument, the test setup, the polarimetric model, the tests performed, and some results. It is demonstrated that HMI achieves an accuracy of 1% or better on the crosstalks between Q, U, and V and that our model can reproduce the intensities in our calibration sequences to about 0.4%. The amount of depolarization is negligible when the instrument is operated as intended which, combined with the flexibility of the polarimeter design, means that the polarimetric efficiency is excellent.  相似文献   

3.
The Helioseismic and Magnetic Imager (HMI) instrument will produce Doppler-velocity and vector-magnetic-field maps of the solar surface, whose accuracy is dependent on a thorough knowledge of the transmission profiles of the components of the HMI optical-filter system. Here we present a series of wavelength-dependence calibration tests, performed on the instrument from 2005 onwards, to obtain these profiles. We obtained the transmittances as a function of wavelength for the tunable and non-tunable filter elements, as well as the variation of these transmittances with temperature and the angle of incidence of rays of light. We also established the presence of fringe patterns produced by interferences inside the blocking filter and the front window, as well as a change in transmitted intensity with the tuning position. This thorough characterization of the HMI-filter system confirmed the very high quality of the instrument, and showed that its properties are well within the required specifications to produce superior data with high spatial and temporal resolution.  相似文献   

4.
5.
We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [T p(x,y)] and emission measure maps [EM p(x,y)] of the full Sun or active region areas, iv) composite DEM distributions [dEM(T)/dT] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [T e], temperature widths [σ T], emission measures [EM], electron densities [n e], and loop widths [w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log(T e)=5.7?–?7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner–Tucker–Vaiana (RTV) law at soft X-ray temperatures (T?2 MK) and its failure at lower EUV temperatures.  相似文献   

6.
Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.  相似文献   

7.
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA’s small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA’s In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号