首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I have relocated 18 earthquakes occurring in the south-central Alaska region between 1899 and 1917 using a bootstrap relocation technique. Locations of events within the Yakutat region suggest that the 1899 sequence began on 4 September with a MS = 7.9 event within the area of the Pamplona fault zone/western Transition fault zone, rupturing the western portion of the North American/Pacific plate interface. A MS = 7.4 event on 10 September appears to have ruptured the offshore portion of the plate interface to the east of the 4 September event. This was followed by a MS = 8.0 event that likely ruptured the onshore and down-dip portion of the plate interface. A MS = 7.0 event in 1908 may have ruptured a small portion of the plate interface between the 4 September and 10 September events. Events occurring between 1911 and 1916 in the Prince William Sound region appear to be slab events occurring in similar locations to more recent seismicity. Within the Kodiak region the 1900 earthquake of MS = 7.7 has a location consistent with the rupture of the Kodiak asperity which also ruptured during the 1964 great Alaska earthquake. Other large magnitude Kodiak events appear to be associated with regions of recent seismicity, including the Karluk Lake area of southwestern Kodiak Island and the Albatross Basin located offshore southeast of Kodiak Island. Space-time seismicity patterns since 1899 indicate that magnitude 6 to7 events have occurred with regularity in the Kodiak Island region; that there has been a lack of magnitude ≥ 6 events in the Prince William Sound region since 1964, and that the Yakutat region has remained notably quiescent at the magnitude ≥ 6 level.  相似文献   

2.
The 1964 Prince William Sound earthquake (March 28, 1964;M w =9.2) caused crustal deformation over an area of approximately 140,000 km2 in south central Alaska. In this study geodetic and geologic measurements of this surface deformation were inverted for the slip distribution on the 1964 rupture surface. Previous seismologic, geologic, and geodetic studies of this region were used to constrain the geometry of the fault surface. In the Kodiak Island region, 28 rectangular planes (50 by 50 km each) oriented 218°N, with a dip varying from 8o nearest the Aleutian trench to 9o below Kodiak Island, define the rupture surface. In the Prince William Sound region 39 planes with variable dimensions (40 by 50 km near the trench, 64 by 50 km inland) and orientation (218°N in the west and 270°N in the east) were used to approximate the complex faulting. Prior information was introduced to constrain offshore dip-slip values, the strike-slip component, and slip variation between adjacent planes. Our results suggest a variable dip-slip component with local slip maximums occurring near Montague Island (up to 30 m), further to the east near Kayak Island (up to 14 m), and trenchward of the northeast segment of Kodiak Island (up to 17m). A single fault plane dipping 30°NW, corresponding to the Patton Bay fault, with a slip value of 8 m modeled the localized but large uplift on Montague Island. The moment calculated on the basis of our geodetically derived slip model of 5.0×1029 dyne cm is 30% less than the seismic moment of 7.5×1029 dyne cm calculated from long-period surface waves (Kanamori, 1970) but is close to the seismic moment of 5.9×1029 dyne cm obtained byKikuchi andFukao (1987).  相似文献   

3.
The 9 March 1957 Aleutian earthquake has been estimated as the third largest earthquake this century and has the longest aftershock zone of any earthquake ever recorded—1200 km. However, due to a lack of high-quality seismic data, the actual source parameters for this earthquake have been poorly determined. We have examined all the available waveform data to determine the seismic moment, rupture area, and slip distribution. These data include body, surface and tsunami waves. Using body waves, we have estimated the duration of significant moment release as 4 min. From surface wave analysis, we have determined that significant moment release occurred only in the western half of the aftershock zone and that the best estimate for the seismic moment is 50–100×1020 Nm. Using the tsunami waveforms, we estimated the source area of the 1957 tsunami by backward propagation. The tsunami source area is smaller than the aftershock zone and is about 850 km long. This does not include the Unalaska Island area in the eastern end of the aftershock zone, making this area a possible seismic gap and a possible site of a future large or great earthquake. We also inverted the tsunami waveforms for the slip distribution. Slip on the 1957 rupture zone was highest in the western half near the epicenter. Little slip occurred in the eastern half. The moment is estimated as 88×1020 Nm, orM w =8.6, making it the seventh largest earthquake during the period 1900 to 1993. We also compare the 1957 earthquake to the 1986 Andreanof Islands earthquake, which occurred within a segment of the 1957 rupture area. The 1986 earthquake represents a rerupturing of the major 1957 asperity.  相似文献   

4.
—In this paper we present results of body wave-form modeling of 19 earthquakes (generally m b 5.7) occurring from 1964 to 1983 in the vicinity and down-dip of the large asperity within the Prince William Sound region that ruptured in 1964. These data are supplemented with source parameters from studies of more recent (post-1980) events. Our results suggest that moderate earthquakes which occurred in the region between 1964 and 1984 were predominantly located in the vicinity of the Prince William Sound asperity and could be assigned to two groups. The first group consists of events occurring above the plate interface within Prince William Sound along reverse faults or low angle thrusts. The second group occurs at 35 to 60 km depth in the region north of Prince William Sound, and represents normal to normal-oblique faulting within the subducted Pacific crust or upper mantle. These earthquakes occur below the northern edge of the 1964 asperity in a region where the subducting plate undergoes a rapid change in strike and dip. A third group of events occurs in Cook Inlet well down-dip of the 1964 asperity and below the plate interface. These events exhibit a variety of mechanisms and many at depths of 50 to 70 km may be associated with complexities in the shape of the downgoing slab. Most of the Cook Inlet events occurred after 1984, whereas a few events of similar magnitude have occurred in the vicinity of the Prince William Sound asperity since 1984.  相似文献   

5.
An earthquake of M S=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor of this earthquake was inverted using the long period body waveform data from China Digital Seismograph Network (CDSN). The apparent source time functions (ASTFs) were retrieved from P and S waves, respectively, using the deconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imaged by inverting the azimuth dependent ASTFs from different stations. The result of the moment tensor inversion indicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in the NNE direction (29°), the T axis in the SEE direction (122°) and that the NEE-SWW striking nodal plane and NNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquake had a scalar seismic moment of 3.4×1020 N·m, and a moment magnitude of M W=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250°, the dip of 88° and the rake of 19°. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the ASTFs were retrieved by deconvoving the synthetic seismograms from the observed seismograms. The ASTFs retrieved from the P and S waves of different stations identically suggested that this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with the half period of about 10 s. Inverting the azimuth dependent ASTFs from P and S waveforms led to the image showing the tempo-spatial distribution of the rupture on the fault plane. From the "remembering" snap-shots, the rupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overall unilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in the western end, about 10 km deep ("western area"); another about 55 km away from the western end and about 35 km deep ("eastern area"); the third about 30 km away from the western end and around 40 km deep ("central area"). The total rupture area was around 70 km long and 60 km wide. From the "forgetting" snap-shots, the rupturing appeared quite complex, with the slip occurring in different position at different time, and the earthquake being of the characteristics of "healing pulse". Another point we have to stress is that the locations in which the rupture initiated and terminated were not where the main rupture took place. Eventually, the static slip distribution was calculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western, eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about 70 km eastern to the epicenter; from the aftershock distribution, however, the aftershocks were very sparse in the west to the epicenter while densely clustered in the east to the epicenter. It indicated that the Mani M S=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in the northwestern Tibetan plateau. Contribution No. 99FE2016, Institute of Geophysics, China Seismological Bureau. This work is supported by SSTCC Climb Project 95-S-05 and NSFDYS 49725410.  相似文献   

6.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

7.
IntroductionAnearthquakeofMs=7.9occurredinMaul,Xizang(Tibet),Chinaat10:02f55.4(UTC),No')ember8.1997.TheepicenterdeterminedbyChinaNationalSeismographNetwork(CNSN)is87.33"E.3>.26'N,thefocaldepthis40km,andthemagnitudeisMs=7.4.Accordingtothedeterllllnati...  相似文献   

8.
The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event (M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event (M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event (M s 7.3) in the middle of the Michoacan gap; the Sept. 19, 1985 Michoacan mainshock (M s 8.1); and the Sept. 21, 1985 Michoacan aftershock (M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines theMoment Tensor Rate Functions; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes theMoment Tensor Rate Functions methodology in detail.The systematic bias between global and regional determinations of epicentral locations in Mexico must be resolved to enable plotting of asperities with aftershocks and geographic features. We have spatially shifted all of our results to regional determinations of epicenters. The best point source depths for the five earthquakes are all above 30 km, consistent with the idea that the down-dip edge of the seismogenic plate interface in Mexico is shallow compared to other subduction zones. Consideration of uncertainties in the focal mechanisms allows us to state that all five earthquakes occurred on fault planes with the same strike (N65°W to N70°W) and dip (15±3°), except for the smaller Playa Azul event at the down-dip edge which has a steeper dip angle of 20 to 25°. However, the Petatlan earthquake does prefer a fault plane that is rotated to a more east-west orientation—one explanation may be that this earthquake is located near the crest of the subducting Orozco fracture zone. The slip vectors of all five earthquakes are similar and generally consistent with the NUVEL-predicted Cocos-North America convergence direction of N33°E for this segment. The most important deviation is the more northerly slip direction for the Petatlan earthquake. Also, the slip vectors from the Harvard CMT solutions for large and small events in this segment prefer an overall convergence direction of about N20°E to N25°E.All five earthquakes share a common feature in the rupture process: each earthquake has a small initial precursory arrival followed by a large pulse of moment release with a distinct onset. The delay time varies from 4 s for the Playa Azul event to 8 s for the Colima event. While there is some evidence of spatial concentration of moment release for each event, our overall asperity distribution for the northern Mexico segment consists of one clear asperity, in the epicentral region of the 1973 Colima earthquake, and then a scattering of diffuse and overlapping regions of high moment release for the remainder of the segment. This character is directly displayed in the overlapping of rupture zones between the 1979 Petatlan event and the 1985 Michoacan aftershock. This character of the asperity distribution is in contrast to the widely spaced distinct asperities in the northern Japan-Kuriles Islands subduction zone, but is somewhat similar to the asperity distributions found in the central Peru and Santa Cruz Islands subduction zones. Subduction of the Orozco fracture zone may strongly affect the seismogenic character as the overlapping rupture zones are located on the crest of the subducted fracture zone. There is also a distinct change in the physiography of the upper plate that coincides with the subducting fracture zone, and the Guerrero seismic gap to the south of the Petatlan earthquake is in the wake of the Orozco fracture zone. At the northern end, the Rivera fracture zone in the subducting plate and the Colima graben in the upper plate coincide with the northernmost extent of the Colima rupture zone.  相似文献   

9.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

10.
Vertical records are critically important when determining the rupture model of an earthquake, especially a thrust earthquake. Due to the relatively low fitness level of near-field vertical displacements, the precision of previous rupture models is relatively low, and the seismic hazard evaluated thereafter should be further updated. In this study, we applied three-component displacement records from GPS stations in and around the source region of the 2013 MW6.6 Lushan earthquake to re-investigate the rupture model.To improve the resolution of the rupture model, records from both continuous and campaign GPS stations were gathered, and secular deformations of the GPS movements were removed from the records of the campaign stations to ensure their reliability. The rupture model was derived by the steepest descent method(SDM), which is based on a layered velocity structure. The peak slip value was about 0.75 m, with a seismic moment release of 9.89 × 10~(18) N·m, which was equivalent to an M_W6.6 event. The inferred fault geometry coincided well with the aftershock distribution of the Lushan earthquake. Unlike previous rupture models, a secondary slip asperity existed at a shallow depth and even touched the ground surface. Based on the distribution of the co-seismic ruptures of the Lushan and Wenchuan earthquakes, post-seismic relaxation of the Wenchuan earthquake, and tectonic loading process, we proposed that the seismic hazard is quite high and still needs special attention in the seismic gap between the two earthquakes.  相似文献   

11.
孟国杰  苏小宁  王振  廖华 《地震》2018,38(2):11-27
联合近场GPS测站1-Hz运动学位移、 强震仪加速度波形和全球台站P震相波形作为约束, 以时空滑动分布约束条件和ABIC模型参数选择方法, 结合先验的滑动方向变化范围, 反演2008年汶川MS8.0地震的震源时空破裂过程, 给出了能够综合反映震源破裂过程的统一模型。 结果表明, 汶川地震总体上存在4个主要的破裂区, 最主要的一个破裂区位于震源东北40~120 km, 断层面上的最大位错量约为10 m, 主体滑动分布在2~20 km深度范围, 破裂达到地表; 第二个主体破裂区位于断层破裂带南段, 最大滑动量达到6 m; 另外2个主体滑动区位于断层破裂带北段, 但滑动破裂量小于断层南段破裂区的滑动量, 滑动破裂值最大值为4 m, 超过1 m的区域在走向上超过70 km。 反演得到的断层滑动模型的地震矩为9.5×1021 Nm, 相应的矩震级为MW7.95。 汶川地震破裂表现为单侧破裂, 起始破裂在汶川下方16 km深度, 向东北方向一致性地传播, 过程持续~120 s。 在地震发生后0~10 s内, 破裂集中在震源起始破裂区, 滑动破裂值为~1.0 m, 之后破裂向东北方向扩展, 震后20~40 s是主要的破裂时段。 在40~60 s, 破裂跨越断层南段和北段。 在80~90 s破裂最大值开始下降, 在100~110 s时, 下降为~0.5 m, 在110~120 s时, 下降为~0.1 m。 加入近场GPS测站1-Hz 波形数据与近场强震仪波形和远场长周期体波联合反演, 提高了震源破裂模型的空间分辨率, 特别是浅部滑动破裂区的分辨率, 反演的最大滑动破裂值比不用1-Hz 波形数据反演的结果增大, 表明近场1-Hz GPS波形数据对于揭示汶川地震的时空破裂过程具有重要的作用。  相似文献   

12.
—The 12 November 1996 M w 7.7 Peru subduction zone earthquake occurred off the coast of southern Peru, near the intersection of the South American trench and the highest topographical point of the subducting Nazca Ridge. We model the broadband teleseismic P-waveforms from stations in the Global Seismic Network to constrain the source characteristics of this subduction zone earthquake. We have analyzed the vertical component P-waves for this earthquake to constrain the depth, source complexity, seismic moment and rupture characteristics. The seismic moment determined from the nondiffracted P-waves is 3–5 × 1020 N·m, corresponding to a moment magnitude M w of 7.6–7.7. The source time function for the 1996 Peru event has three pulses of seismic moment release with a total duration of approximately 45–50 seconds. The largest moment release occurs at approximately 35–40 seconds and is located ~90km southeast of the rupture initiation. Approximately 70% of the seismic moment was released in the third pulse.¶We find that the 1996 event reruptured part of the rupture area of the previous event in 1942. The location of the 1996 earthquake corresponds to a region along the Peru coast with the highest uplift rates of marine terraces. This suggests that the uplift may be due to repeated earthquakes such as the 1996 and 1942 events.  相似文献   

13.
—A finite-source rupture model of the July 30, 1995, M w = 8.1 Antofagasta (Northern Chile) subduction earthquake is developed using body and surface waves that span periods from 20 to 290s. A long-period (150–290s) surface-wave spectral inversion technique is applied to estimate the average finite-fault source properties. Deconvolutions of broadband body waves using theoretical Green’s functions, and deconvolutions of broadband fundamental mode surface waves using empirical Green’s functions provided by a large aftershock, yield effective source time functions containing periods from 20 to 200s for many directivity parameters. The source time functions are used in an inverse radon transform to image a one-dimensional spatial model of the moment rate history. The event produced a predominantly unilateral southward rupture, yielding strong directivity effects on all seismic waves with periods less than a few hundred seconds. The aftershock information, spectral analysis, and moment rate distribution indicate a rupture length of 180–200km, with the largest slip concentrated in the first 120km, a rupture azimuth of 205°± 10° along the Chilean coastline, and a rupture duration of 60–68s with a corresponding average rupture velocity of 3.0–3.2km/s. The overall rupture character is quite smooth, accentuating the directivity effects and reducing the shaking intensity, however there are three regions with enhanced moment rate distributed along the rupture zone near the epicenter, 50 to 80km south of the epicenter, and 110 to 140km south of the epicenter.  相似文献   

14.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

15.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

16.
Two large shallow earthquakes occurred in 1942 along the South American subduction zone inclose proximity to subducting oceanic ridges: The 14 May event occurred near the subducting Carnegie ridge off the coast of Ecuador, and the 24 August event occurred off the coast of southwestern Peru near the southern flank of the subducting Nazca ridge. Source parameters for these for these two historic events have been determined using long-periodP waveforms,P-wave first motions, intensities and local tsunami data.We have analyzed theP waves for these two earthquakes to constrain the focal mechanism, depth, source complexity and seismic moment. Modeling of theP waveform for both events yields a range of acceptable focal mechanisms and depths, all of which are consistent with underthrusting of the Nazca plate beneath the South American plate. The source time function for the 1942 Ecuador event has one simple pulse of moment release with a duration of 22 suconds, suggesting that most of the moment release occurred near the epicenter. The seismic moment determined from theP waves is 6–8×1020N·m, corresponding ot a moment magnitude of 7.8–7.9. The reported location of the maximum intensities (IX) for this event is south of the main shock epicenter. The relocated aftershcks are in an area that is approximately 200 km by 90 km (elongated parallel to the trench) with the majority of aftershocks north of the epicenter. In contrast, the 1942 Peru event has a much longer duration and higher degree of complexity than the Ecuador earthquake, suggesting a heterogeneous rupture. Seismic moment is released in three distinct pulses over approximately 74 seconds; the largest moment release occurs 32 seconds after rupture initiation. the seismic moment as determined from theP waves for the 1942 Peru event is 10–25×1020N·m, corresponding to a moment magnitude of 7.9–8.2. Aftershock locations reported by the ISS occur over a broad area surrounding the main shock. The reported locations of the maximum intensities (IX) are concentrated south of the epicenter, suggesting that at least part of the rupture was to the south.We have also examined great historic earthquakes along the Colombia-Ecuador and Peru segments of the South American subduction zone. We find that the size and rupture length of the underthrusting earthquakes vary between successive earthquake cycles. This suggests that the segmentation of the plate boundary as defined by earthquakes this century is not constant.  相似文献   

17.
许力生  张旭  张喆 《地球物理学报》1954,63(11):4012-4022
2020年6月23日15时29分04秒(UTC),在墨西哥南部瓦哈卡州发生了一次震级为MW7.4的地震,我们利用全球地震台网(GSN)和国际数字地震台网联盟(FDSN)台网的长周期和宽频带P波数据反演分析了这次地震的震源机制、震源时间函数以及时空破裂过程.根据反演结果,这次地震的矩心震中位于15.96°N,95.89°W,矩心深度约为22 km;地震持续15 s左右,释放地震矩1.24×1020 N·m,相当于矩震级MW7.4;破裂过程比较简单,仅有一个走向和倾向方向尺度相当的凹凸体错动,最大位错达8.1 m,位于21 km深处.凹凸体破裂主要沿断层的滑动方向呈双侧破裂,两个优势破裂方向在地表投影的方位分别位于60°和270°左右.综合构造背景、震源位置、余震分布、震源机制以及时空破裂过程,我们相信这次地震是发生在北美大陆板块和太平洋海底板块相互作用的结果.海底板块朝着大约60°左右的方位运动,以大约22°的倾角插入大陆板块,造成一个凹凸体错动,形成了这次地震.  相似文献   

18.
IntroductionOn September 27, 2003, an earthquake of MS=7.9 struck the border area of China, Russia and Mongolia. According to the field investigation from the Earthquake Administration of XinjiangAutonomous Region, the whole northern Tianshan region felt the hit. Buildings and structures within six counties and one city in Altay region, which is total about 0.11×106 km2 area, were damaged to different extent and caused certain economic losses. The epicenter determined by China National …  相似文献   

19.
—Tectonic studies of the great 1964 Alaska earthquake have underappreciated the nature of the subducted plate in influencing seismicity. We compare seismological observations in the Prince William and Kodiak areas that ruptured during this earthquake with the corresponding morphology and structure of the subducting plate. The upper plate geology (Prince William Terrane) and velocity structure are the same in both areas. In the Prince William area where the Yakutat Terrane subducted, the energy released and coupling were stronger than above the Kodiak subduction zone where thick trench sediment subducts. The conjecture that lower plate character or the amount of subducted sediment affects coupling helps explain variability in seismology, geodetic inversions and the horizontal velocity of GPS stations.  相似文献   

20.
On 25th April, 2015 a hazardous earthquake of moment magnitude 7.9 occurred in Nepal. Accelerographs were used to record the Nepal earthquake which is installed in the Kumaon region in the Himalayan state of Uttrakhand. The distance of the recorded stations in the Kumaon region from the epicenter of the earthquake is about 420–515 km. Modified semi-empirical technique of modeling finite faults has been used in this paper to simulate strong earthquake at these stations. Source parameters of the Nepal aftershock have been also calculated using the Brune model in the present study which are used in the modeling of the Nepal main shock. The obtained value of the seismic moment and stress drop is 8.26 × 1025 dyn cm and 10.48 bar, respectively, for the aftershock from the Brune model .The simulated earthquake time series were compared with the observed records of the earthquake. The comparison of full waveform and its response spectra has been made to finalize the rupture parameters and its location. The rupture of the earthquake was propagated in the NE–SW direction from the hypocenter with the rupture velocity 3.0 km/s from a distance of 80 km from Kathmandu in NW direction at a depth of 12 km as per compared results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号