首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet–biotite and garnet–cordierite geothermometers have been consistently calibrated, using the results of Fe2+–Mg cation exchange experiments and utilizing recently evaluated nonideal mixing properties of garnet. Nonideal mixing parameters of biotite (including Fe, Mg, AlVI, and Ti) and of cordierite (involving Fe and Mg) are evaluated in terms of iterative multiple least-square regressions of the experimental results. Assuming the presence of ferric Fe in biotite in relation to the coexisting Fe-oxide phases (Case A), and assuming the absence of ferric Fe in biotite (Case B), two formulae of garnet–biotite thermometer have been derived. The garnet–cordierite geothermometer was constructed using Margules parameters of garnet adopted in the garnet–biotite geothermometers. The newly calibrated garnet–biotite and garnet–cordierite thermometers clearly show improved conformity in the calculated temperatures. The thermometers give temperatures that are consistent with each other using natural garnet–biotite–cordierite assemblages within ±50 °C. The effects of ferric Fe in biotite on garnet–biotite thermometry have been evaluated comparing the two calibrations of the thermometer. The effects are significant; it is clarified that taking ferric Fe content in biotite into account leads to less dispersion of thermometric results.  相似文献   

2.
If cordierite is treated as an anhydrous mineral, the composition of garnet and cordierite, coexisting with quartz and silliminate, depends on total pressure and temperature. Phase relations may be deduced by combining some available experimental work with several approximations. Assuming ideal ionic solution in garnet and cordierite, analyses of coexisting garnet and cordierite permit the determination of total pressure and temperature. Five rocks from the Daly Bay Complex, N. W. T., collected from locations up to 35 miles apart, indicate a range of 610–760 and 5.3–6.6 kb.  相似文献   

3.
Partial electron microprobe analyses of garnet, biotite and cordierite in sillimanite-K feldspar gneisses of the Brimfield Formation in south-central Massachusetts indicate that the compositions of these minerals are not constant in a thin section. The FeO/MgO mol ratio of biotite is sensitive to the nature of other FeO-MgO minerals occurring in close proximity. The most iron-rich biotites are those that do not contact either cordierite or garnet. The most iron-poor biotites occur as inclusions in garnet. Biotites in direct contact with either cordierite or garnet have intermediate FeO/MgO ratios. The bulk of a given grain of garnet or cordierite is homogeneous in composition. Chemical zoning is absent. All grains of garnet and cordierite in a thin section are constant in composition. However, where garnet and cordierite abut biotite, the FeO/MgO ratio of the garnet rim is increased and that of cordierite is decreased. The FeO/MgO ratios of garnet, cordierite and biotite bare a regular relation to each other indicating a possible equilibrium state. However the distribution coefficient defined by the compositions of minerals in direct contact are greater than those defined by the compositions of the interiors of garnet and cordierite matched with the compositions of biotites removed from these phases. This pattern is believed to be the result of two thermal events. The first event produced the mineral assemblages and widespread equilibrium was obtained. A subsequent retrograde event left the mineralogy intact but caused cation exchange reactions at immediate contacts between garnet, cordierite and biotite. The physical conditions of the first event are estimated at P=5–6 kb, T=700–750° C. The retrograde event occurred at lower temperatures and very low activities of H2O since no muscovite is developed at microcline-sillimanite contacts.  相似文献   

4.
Abstract Partitioning of Fe and Mg between garnet and phengitic muscovite was calibrated as a geothermometer by Green & Hellman (1982) using experimental data at 25–30 kbar. When the thermometer is applied to pelites regionally metamorphosed at pressures of between 3 and 7 kbar it yields temperatures much higher than those from the garnet–biotite thermometer. A new empirical calibration is proposed for use with such rocks, with particular application where garnet occurs at lower grades than biotite. The new calibration is where K is given by: In K = In K d and X ii are mole fractions in the garnets.
The calibration was derived from comparison with the garnet–biotite thermometer of Ferry & Spear (1978), assuming no pressure-dependence for the partitioning between garnet and muscovite, no ferric iron partitioning, ideal mixing in muscovite, and the garnet mixing model of Ganguly & Saxena (1984) modified for a non-linear Ca effect. This latter garnet mixing model was selected because it gave the geologically most reasonable results. It has not proved possible to distinguish a pressure effect from a ferric-iron effect.
Despite the simplifying assumptions used to derive the calibration, it yields temperatures generally within 15°C of those given by the garnet–biotite thermometer, and has been used to supply thermometric data in a low-grade region of the Canadian Rockies.  相似文献   

5.
Cordierite occurs locally and sporadically in biotite-quartz-two feldspar paragneisses of the Precambrian Highlands complex in southeastern New York. Cordieritic and associated non-cordieritic gneisses were compared to determine the significance of cordierite for the metamorphic history of the complex.Microprobe analyses of the ferromagnesian phases show the following ranges in Fe/Mg (mol.): cordierite 0.19–0.43; biotite 0.33–0.73; garnet 1.98–3.56. Feldspar compositional ranges are: plagioclase An25–53; K-feldspar in microperthite Or62–87Ab12–37 An0–1. Garnet and plagioclase associated with cordierite are depleted in Ca relative to those in cordierite-free assemblages.Textural evidence, phase rule considerations and consistent distribution coefficients for FeO and MgO in coexisting garnet, cordierite and biotite from each locality examined suggest that all phases formed in at least local equilibrium during the hornblende-granulite subfacies metamorphism. The assemblages studied limit the conditions of metamorphism to between 700 and 750° C and 3.0 to 5.5. Kb. total pressure, with P T greater than . Differences in mineral compositions and partitioning coefficients among the sampled areas suggest slight local differences within these ranges.Mineral and modal analyses of cordierite-bearing and cordierite-free gneisses show the latter to be enriched in calcium and potassium and depleted in alumina relative to the former. We conclude that the rarity of cordierite in the Highlands paragneisses reflects a scarcity of parent rocks of suitable composition rather than unfavorable physical conditions.  相似文献   

6.
Abstract A garnet–hornblende Fe–Mg exchange geothermometer has been calibrated against the garnet–clinopyroxene geothermometer of Ellis & Green (1979) using data on coexisting garnet + hornblende + clinopyroxene in amphibolite and granulite facies metamorphic assemblages. Data for the Fe–Mg exchange reaction between garnet and hornblende have been fitted to the equation. In KD=Δ (XCa,g) where KD is the Fe–Mg distribution coefficient, using a robust regression approach, giving a thermometer of the form: with very satisfactory agreement between garnet–hornblende and garnet–clinopyroxene temperatures. The thermometer is applicable below about 850°C to rocks with Mn-poor garnet and common hornblende of widely varying chemistry metamorphosed at low aO2. Application of the garnet–hornblende geothermometer to Dalradian garnet amphibolites gives temperatures in good agreement with those predicted by pelite petrogenetic grids, ranging from 520°C for the lower garnet zone to 565–610°C for the staurolite to kyanite zones. These results suggest that systematic errors introduced by closure temperature problems in the application of the garnet–clinopyroxene geothermometer to the ‘calibration’data set are not serious. Application to ‘eclogitic’garnet amphibolites suggests that garnet and hornblende seldom attain Fe–Mg exchange equilibrium in these rocks. Quartzo-feldspathic and mafic schists of the Pelona Schist on Sierra Pelona, Southern California, were metamorphosed under high pressure greenschist, epidote–amphibolite and (oligoclase) amphibolite facies beneath the Vincent Thrust at pressures deduced to be 10±1 kbar using the phengite geobarometer, and 8–9kbar using the jadeite content of clinopyroxene in equilibrium with oligoclase and quartz. Application of the garnet–hornblende thermometer gives temperatures ranging from about 480°C at the garnet isograd through 570°C at the oligoclase isograd to a maximum of 620–650°C near the thrust. Inverted thermal gradients beneath the Vincent Thrust were in the range 170 to 250°C per km close to the thrust.  相似文献   

7.
We report here for the first time, the occurrence of sapphirine+quartz assemblage in textural equilibrium from quartzo-feldspathic and pelitic granulites from southern India. The sapphirine-bearing rocks occur as layered gneisses associated with pink granite within massive charnockite in Rajapalaiyam area in the southern part of Madurai Block. Sapphirine occurs in three associations: (i) fine-grained subhedral mineral associated with quartz enclosed in garnet, (ii) intergrowth with Al-rich orthopyroxene (up to 9.7 wt.% Al2O3), and (iii) in symplectitic intergrowth with orthopyroxene (Al2O3= 5.9–6.7 wt.%) and cordierite surrounding garnet. The sapphirine in association with quartz is slightly magnesian (XMg = 0.79–0.80) and low in Si content (1.55–1.56 pfu) as compared with those associated with orthopyroxene and cordierite (XMg= 0.77–0.79, Si = 1.59–1.63 pfu). The sapphirine+quartz assemblage suggests that the granulites underwent T>1050 °C peak metamorphism. Cores of porphyroblastic orthopyroxene in the sapphirine-bearing rocks shows high-Al2O3 content of up to 9.7 wt.%, suggesting T = 1040–1060°C and P = 8 kbar. FMAS reaction of sapphirine+quartz→garnet+sillimanite+cordierite indicates a cooling from sapphirine+quartz stability field after the peak ultrahigh-temperature metamorphism. Slightly lower temperature estimates from ternary feldspar and sapphirine-spinel geothermometers (T = 950–1000°C) also support a post-peak isobaric cooling. Corona textures of orthopyroxene+cordierite (±sapphirine), orthopyroxene+sapphirine, and cordierite+spinel around garnet suggest subsequent decompression. The sapphirine-quartz association and related textures reported in this study have important bearing on the ultrahigh-temperature metamorphism and exhumation history of the Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   

8.
Cordierite and orthopyroxene (or orthoamphibole) are widespread in migmatitic terranes, and partial melting of pelitic rocks may be important in their production. In particular, the reaction quartz +albite+biotite+garnet+water vapor = cordierite +orthopyroxene or orthoamphibole+melt was among reactions discussed by Grant (1973) but poorly constrained in pressure-temperature space.This reaction involves too many phases to be readily studied experimentally. Therefore simpler melting and dehydration reactions involving quartzalbite-biotite-cordierite-orthopyroxene were investigated.In conjunction with the work of Hoffer (1976, 1978) these experiments place useful constraints on the above reaction and on the reaction quartz+albite+aluminosilicate+biotite+vapor = cordierite+garnet+melt. In pelitic rocks near the second illimanite isograd, cordierite and garnet may coexist with melt as low as 660° C and cordierite and orthopyroxene may coexist with melt at temperatures less than 675° C. In the absence of significant Mn or Ca, in pelitic rocks within the realm of melting, biotite+garnet assemblages are probably limited to pressures greater than 2kb and aluminosilicate+biotite assemblages to pressures greater than 3kb.  相似文献   

9.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

10.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

11.
A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer   总被引:1,自引:0,他引:1  
A comprehensive experimental dataset was used to analyse the compositional dependence of the garnet-clinopyroxene Fe2+/Mg partition coefficient (K d). The Mg no. of garnet was found to have a significant effect on the K d, in addition to calcium content of garnet. An empirical model was developed to relate these effects with equilibrium temperature and pressure in the form of a conventional geothermometer, T(K) = { – 1629[XGt Ca]2 + 3648.55[XGt Ca] – 6.59[Mg no. (Gt)] + 1987.98 + 17.66P (kbar)}/(In kd + 1.076). Application of this thermometer produced reasonable temperature estimates for rocks from the lower crust (garnet amphibolites, granulites and eclogites) and the upper mantle (eclogite and lherzolite xenoliths in kimberlites, mineral inclusions in diamonds).  相似文献   

12.
A Report on a Biotite-Calcic Hornblende Geothermometer   总被引:1,自引:0,他引:1  
This paper presents a biotite-calcic hornblende geothermometer which was empirically calibrated based on the gamet-biotite geothermometer and the gamet-plagioclase-hornblende-quartz geobarometer, in the ranges of 560-800℃ (T) and 0.26-1.4 GPa (P) using the data of metadolerite, amphibolite, metagabbro, and metapelite collected from the literature. Biotite was treated as symmetric Fe-Mg-AlVI-Ti quaternary solid solution, and calcic hornblende was simplified as symmetric Fe-Mg binary solid solution. The resulting thermometer may rebuild the input garnet-biotite temperatures well within an uncertainty of ±50℃. Errors of ±0.2 GPa for input pressure, along with analytical errors of ?% for the relevant mineral compositions, may lead to a random error of ±16℃ for this thermometer, so that the thermometer is almost independent of pressure estimates. The thermometer may clearly discriminate different rocks of lower amphibolite, upper amphibolite and granulite facies on a high confidence level. It is assume  相似文献   

13.
The reaction fayalite+anorthite=garnet (GAF) has been investigated in a piston-cylinder apparatus and in an internally heated gas apparatus. Piston-cylinder reversals were obtained at 900 °C (6.0–6.4 kbar), 950 °C (6.3–6.8 kbar), 1000 °C (6.6–7.1 kbar), and 1050 °C (7.0–7.3 kbar). Gas-apparatus experiments yielded a reversal at 7 kbar (993–1049 °C). Results are consistent with earlier experimental studies. Unless garnet Ca–Fe mixing is attended by an excess entropy of at least 2–3 J/K-atom, discrepancies remain between calculated and experimentally determined slopes for GAF. The discrepancy is greater if there is no Al–Si disorder in anorthite. High temperature thermodynamic data for almandine and grossular are needed to help resolve this problem.  相似文献   

14.
 The garnet (Grt)-clinopyroxene (Cpx) Fe-Mg exchange thermometer has been re-evaluated through analysis of phase equilibrium experiments defining the Fe-Mg exchange between Grt and Cpx, Grt and Ol (Ol=Olivine), and Cpx and Ol, together with thermophysical and other phase equilibrium constraints on solid solution and individual end-member properties. Results show that all data are mutually compatible if the heterogeneity range of Grt and Cpx in run products previously obtained by Pattison and Newton (PN) are accounted for in assessing equilibrium Grt-Cpx compositions. Derived mixing properties are in good agreement with results from numerous recent phase equilibrium studies. Application of the newly calibrated thermometer to a number of amphibolite to granulite facies terrains indicates temperatures between 70 and 200 ° C above PN’s thermometer, and general compatibility with independent temperature estimates. Received: 3 September 1993 / Accepted: 16 June 1994  相似文献   

15.
Aluminous parageneses containing gedrite, cordierite, garnet, staurolite, biotite, sillimanite, kyanite, quartz or spinel plus corundum are found as dark colored lenses in the polymetamorphic, multideformed Archean complex at Ajitpura in northwest peninsular India. Staurolite, like kyanite, is a relict phase of earlier metamorphism and is excluded as a paragenetic mineral in view of its incompatibility with quartz and gedrite and its lower X Mg values than for garnet of the assemblage. Its stability here is attributed to zinc content of up to 3 wt%. The XMg in other ferromagnesian minerals decreases in the order: cordierite, biotite, gedrite, garnet, as found elsewhere in high grade rocks.The textural criteria and systematic partitioning of Fe and Mg in the ferromagnesian phases, excluding staurolite, indicate attainment of equilibrium during the second metamorphism. From tie line configurations in the phase diagrams, X Mg ratios in the constituent minerals, and other petrographic criteria, it is suggested that gedrite — cordierite-garnet — sillimanite — biotite assemblage has been produced by the reactions: Biotite+Sillimanite+Quartz = Cordierite+Garnet+K-feldspar+Vapor (1) and Biotite+Sillimanite+Quartz = Cordierite +Gedrite+K-feldspar+Vapor (2) which occurred during partial melting of the rocks at fixed P and T conditions.By isothermal P-X(Fe-Mg) sections it has been demonstrated that release of FeO, SiO2 and other components modified the composition of the reactant biotite presumably by the substitution FeSi2 Al, whereby reaction 1 was replaced by reaction 2. Cordierite with higher X Mg was produced with gedrite instead of with garnet, whose X Mg is less than X Mg of gedrite. Reaction 2 has been tentatively located in T-P space from the intersection of some continuous loops in the P-X(Fe-Mg) diagram at 700°C and also by other constraints. The discontinuous reaction 2 is located about 1–2 kilobars higher than reaction 1, which implies that it is difficult to distinguish between effects of pressure and those of melting on the X Mg ratios of the reaction phases.The P-T calibrations of garnet — cordierite, garnet — biotite and garnet — plagioclase equilibria and the calibrations from other dehydration curves give temperatures near 700°C and pressure (assuming ) about 6 kilobars.  相似文献   

16.
Garnet-biotite (-cordierite) phase relations in high-grade gneisses of the south coast of Western Australia reflect at least two metamorphic episodes. Chemical uniformity of the interiors of garnet and cordierite grains suggest thorough equilibration during a major phase of metamorphism. Narrow Mg-depleted rims on garnet grain boundaries in contact with biotite or cordierite, and complementary Mg-enriched rims on contiguous cordierites are the result of subsequent retrograde re-equilibration. The absence of reaction zoning in biotites suggests more complete retrograde modification of this mineral.Comparison between granulite and amphibolite facies garnet-biotite pairs shows that Mn contents of both minerals are higher, and Ti contents of the biotites are lower, in the lower-grade rocks. These differences, although not entirely unrelated to grade, are more directly controlled by variations in host rock chemistry and modal amounts of garnet and biotite.Partitioning of Mg, Fe2+ and Mn between garnet and biotite is fairly uniform, with no clear differences between granulite and amphibolite facies pairs. Application of the Mg-Fe2+ distributions to the geothermometers devised by Perchuk, Thompson, and Goldman & Albee yields variable T estimates of 600–680°C, 580–780°C, and 475–715°C respectively, for the main metamorphism. These estimates are low compared with the T indicated for the granulite facies rocks by other evidence (i.e. > 750°C at 5 kb PT). The Mg-Fe2+ distributions between contiguous garnet-biotite rims suggest that retrograde re-equilibration occurred at least 20–140°C below the T of the main metamorphism.  相似文献   

17.
The Thor-Odin dome region of the Shuswap metamorphic core complex, British Columbia, contains migmatitic rocks exhumed from the deep mid-crust of the Cordilleran orogen. Extensive partial melting occurred during decompression of the structurally deepest rocks, and this decompression path is particularly well recorded by mafic boudins of silica-undersaturated, aluminous rocks. These mafic boudins contain the high-temperature assemblages gedrite+cordierite+spinel+corundum+kyanite/sillimanite±sapphirine±högbomite and gedrite+cordierite+spinel+corundum+kyanite/sillimanite+garnet±staurolite (relict)±anorthite. The boudins are interlayered with migmatitic metapelitic gneiss and orthogneiss in this region.

The mineral assemblages and reaction textures in these rocks record decompression from the kyanite zone (P>8–10 kbar) to the sillimanite–cordierite zone (P<5 kbar) at T750 °C, with maximum recorded temperatures of 800 °C. Evidence for high-temperature decompression includes the partial replacement of garnet by cordierite, the partial to complete replacement of kyanite by corundum+cordierite+spinel (hercynite)±sapphirine±högbomite symplectite, and the replacement of some kyanite grains by sillimanite. Kyanite partially replaced by sillimanite, and sillimanite with coronas of cordierite±spinel are also observed in the associated metapelitic rocks.

Partial melt from the surrounding migmatitic gneisses has invaded the mafic boudins. Cordierite reaction rims occur where minerals in the boudins interacted with leucocratic melt. When combined with existing structural and geochronologic data from migmatites and leucogranites in the region, these petrologic constraints suggest that high-temperature decompression was coeval with partial melting in the Thor-Odin dome. These data are used to evaluate the relationship between partial melting of the mid-crust and localized exhumation of deep, hot rocks by extensional and diapiric processes.  相似文献   


18.
A new formulation of garnet-biotite Fe–Mg exchange thermometer has been developed through statistical regression of the reversed experimental data of Ferry and Spear. Input parameters include available thermo-chemical data for quaternary Fe–Mg–Ca–Mn garnet solid solution and for excess free energy terms, associated with mixing of Al and Ti, in octahedral sites, in biotite solid solution. The regression indicates that Fe–Mg mixing in biotite approximates a symmetrical regular solution model showing positive deviation from ideality withW FeMg bi =1073±490 cal/mol. H r and S r for the garnet-biotite exchange equilibrium were derived to be 4301 cal and 1.85 cal respectively. The resultant thermometer gives consistent results for rocks with a much wider compositional range than can be accommodated by earlier formulations.  相似文献   

19.
Sapphirine and spinel can accommodate significant ferric iron and therefore the mineral equilibria involving these phases must be sensitive to a(O2). In this paper we examine the theoretical phase relationships involving sapphirine and spinel in addition to sillimanite, garnet, cordierite, rutile, hematite-ilmenite solid solution (henceforth ilmenite), and magnetite-ulvospinel solid solution (henceforth magnetite), in the presence of quartz and hypersthene in the system FeO-MgO-Al2O3-SiO2-TiO2-O2 (FMASTO), with particular reference to the topological inversion in P-T postulated by Hensen (Hensen 1986). Documented natural associations suggest that the appropriate topology for assemblages involving magnetite and ilmenite is Hensen's higher a(O2) one, while, in contrast, the topology for assemblages involving ilmenite and rutile is the lower a(O2) one. The exact configuration of the inversion between these two topologies remains uncertain because of uncertainties in the ferric/ferrous iron partitioning between sapphirine and spinel-cordierite at high temperatures. By comparison with experimental data and natural occurences, the sillimanite-sapphirine-cordierite-garnet-hypersthene-quartz assemblage is in equilibrium at about 1000°–1020° C and 7–8 kbars, while sapphirine-cordierite-spinel-garnet-hypersthene-quartz occurs at temperatures in excess of those attainable during crustal metamorphism, for ilmenite-rutile buffered assemblages. This implies that sapphirine-rutil-ehypersthene-quartz assemblages, as found in the Napier Complex, Antarctica, can only occur at > 1000° C. Also, spinel-rutile-hypersthene-quartz assemblages should not be found in rocks because temperatures in excess of 1100° C are expected to be involved in their formation. The temperatures of formation of spinel-sillimanite-sapphirine-garnethypersthene-quartz, sapphirine-spinel-cordierite-sillimanite-hypersthene-quartz, and sillimanite-spinel-cordieritegarnet-hypersthene-quartz in assemblages buffered by magnetite and ilmenite are less well constrained, but are likely to be in the range 900°–1000° C. These conclusions apply to rocks with compositions close to FMASTO; the perturbing effects of substantial concentrations of additional components, in particular Ca, mainly in garnet, and Zn and Cr, mainly in spinel, may invalidate these conclusions.  相似文献   

20.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号