首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of the lunar frontside gravity field with topography indicates that low-density ( 2.9 g cm–3) types of rock form a surface layer or crust of variable thickness: 40-60 km beneath terrae; 20-40 km beneath non-mascon maria; 0-20 km beneath mascon maria. The observed offset between lunar centers of mass and figure is consistent with farside crustal thicknesses of 40-50 km, similar to frontside terra thicknesses.The Moon is asymmetric in crustal thickness, and also in the distribution of maria and gamma radioactivity. Early bombardment of the Moon by planetesimals, in both heliocentric and geocentric orbits, is examined as a possible cause of the asymmetries. The presence of a massive companion (Earth) causes a spin-orbit coupled Moon to be bombarded non-uniformly. The most pronounced local concentration of impacts would have occurred on the west limb of the Moon, when it orbited close to the Earth, if low-eccentricity heliocentric planetesimals were still abundant in the solar system at that time.A very intense bombardment of this type could have redistributed crustal material on the Moon, thinning the west limb crust appreciably. This would have caused a change in position of the principal axes of inertia, and a reorientation of the spin-orbit coupled Moon such that the thinnest portion of its crust turned toward one of the poles. Erupting lavas would have preferentially flooded such a thin-crusted, low-lying area. This would have caused another readjustment of principal moments, and a reorientation of the Moon such that the mare areas tipped toward the equator. The north-south and nearside-farside asymmetries of mare distribution on the present Moon can be understood in terms of such a history.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

2.
A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the PT conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).  相似文献   

3.
There have been many models describing the evolution of our sister planet. As information from the intensive exploration by the Apollo program has accumulated, more constraints on these models have emerged. We specifically consider a hypothesis in which there is a present day asthenosphere, a heat flow between 24 and 32 ergs cm−2 s−1 and a crust which developed early in the Moon's history by melting of the outer 100 to 200 km. We have also introduced a constraint which keeps the deep interior below the Curie point of iron for the first 1 to 1.5 b.y. so that it is able to carry the memory of an early field which magnetized the cold interior. The magnetized mare basalts and breccias cooled in this field from above the Curie point of iron (≈800°C.) and acquired a thermoremanent magnetization. While fully recognizing that some of these constraints are subject to other interpretations, it is nevertheless instructive to consider the thermal history that follows from such a model. First, the initial temperature must be high enough to cause melting in the outer 100–200 km, while the interior temperature must be cool enough to be below the Curie point of iron. Second, the crust in this model cools off so rapidly that the mare basalts could not be developed as late as indicated in lunar history. Rather we propose that the mare basalts result from local remelting associated with giant impacts. Third, the Moon's deep interior must have warmed up enough to erase the memory of the ancient magnetic field from the deep interior and to develop the asthenosphere which has been detected seismically. Fourth, if this asthenosphere is real, the viscosity of the Moon as a function of temperature must be high enough to have prevented convective cooling until the temperature increased to a value near the solidus temperature. At this temperature, the Moon would then likely cool by convection in the solid state. It is, therefore, a consequence of this model that solid body convection tool place late in lunar history. This may well have contributed to the lunar center of figure and center of mass offset, to the low order terms in its gravity field and to, its disequilibrium moment of inertia differences.  相似文献   

4.
The electrical conductivity of olivine and pyroxene is a strong function of the fugacity of oxygen in the atmosphere with which the mineral is in equilibrium. Lunar temperature profiles calculated from data on the electrical conductivity of these two minerals at oxygen fugacities similar to those which exist in the Moon indicate considerably higher temperatures for the lunar interior than obtained from conductivity data collected under normal atmospheric conditions. These high interior temperatures, the extensive differentiation associated with the formation of the lunar maria, and the radioactive element content of the Moon indicate that the Moon accreted at temperatures between 600 and 1000°C. Gravitational heating during accretion would lead to melting of at least the outer 200 km of the Moon and would produce conditions favourable to separation of a metal-sulfide melt sufficient to form a core of 200–300 km radius. Such a core would reach the center of the Moon within a few million years after accretion. This core could produce the remanent magnetization observed in the surface rocks. Dynamo action would cease with the cessation of convective motion within the core as the temperature of the surrounding mantle increased due to radioactive heating. With the radioactivity assumed in the present model and the high accretion temperature, this event would require less than 2 b.y., but more than 1.6 b.y.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

5.
Matija ?uk 《Icarus》2011,211(1):97-100
The Moon has long been known to have an overall shape not consistent with expected past tidal forces. It has recently been suggested (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) that the present lunar moments of inertia indicate a past high-eccentricity orbit and, possibly, a past non-synchronous spin-orbit resonance. Here I show that the match between the lunar shape and the proposed orbital and spin states is much less conclusive than initially proposed. Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) spin and shape evolution scenarios also completely ignore the physics of the capture into such resonances, which require prior permanent deformation, as well as tidal despinning to the relevant resonance. If the early lunar orbit was eccentric, the Moon would have been rotating at an equilibrium non-synchronous rate determined by it eccentricity. This equilibrium supersynchronous rotation would be much too fast to allow a synchronous spin-orbit lock at e = 0.49, while the capture into the 3:2 resonance is possible only for a very constrained lunar eccentricity history and assuming some early permanent lunar tri-axiality. Here I show that large impacts in the early history of the Moon would have frequently disrupted this putative resonant rotation, making the rotation and eccentricity solutions of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) unstable. I conclude that the present lunar shape cannot be used to support the hypothesis of an early eccentric lunar orbit.  相似文献   

6.
In this paper it is shown that the differences of the moments of inertia of the Moon are, most likely, due to the surface irregularities, the over-all front side mare fillings and the backside topography.  相似文献   

7.
Fission from the Earth's mantle explains why the density of the Moon is similar to that of the Earth's mantle.If following the fission origin of the Moon, the Earth-Moon distance increases progressively, the Moon can recollect chemicals evaporated by the Earth but not volatile enough to be lost as gases.In this way, the surface of the Moon can be enriched in refractory elements as most of the authors have proposed.At 3 Earth radii the long geosynchronous phase allows the formation of a solid crust which will record the Earth's magnetic field and the equilibrium hydrostatic from at that distance.When geosynchronism is broken the Moon will recede; its shape will no longer fit the hydrostatic form. The crust will either break or will exercise pressure on the lower layers. Meteor craters will allow lava to come to the surface. Such flows will be very large where the shape of the crust does not fit at all the geosynchronous form. Large lava flows will appear this way on the near side where the shape has changed the most. The new lava flows no longer record the magnetic field of the Earth because with the end of the synchronous position the field is alternative for the Moon; only the remanent field can influence the new lava.Three out of five samples dated at 3.6 b.y. suggest nevertheless that the field decreased slowly without becoming alternative. This means that the geosynchronous phase may have lasted longer and put the Moon on a more distant orbit, as Alfvén and Arrhenius suggested.The interpretation of lunar magnetism as influenced by the Earth cannot discard any interpretation or suggestion of its own lunar magnetic process. It is quite possible that both mechanisms have worked as some samples show.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademic Nazionale del Lincei in Rome, Italy.  相似文献   

8.
The effects of a giant impact on the thermal evolution of the Moon are investigated. It is found that an impact similar to that of Imbrium creates lateral temperature variations of more than 200 deg within the upper 200 km of the Moon. Starting with a common lithosphere of 70 km thickness, the lithosphere beneath the basin grows to 200 km in thickness within 0.5 b.y. after the impact, while that beneath the highlands reaches to only 100 km in thickness during this period. The model presented for the thermal evolution of the Moon is compatible with (1) the existence of mascons for more than 3 b.y., (2) the late magmatization and subsequent volcanic activities during 4 to 3 b.y. ago and (3) the negative gravity rings around the large mascons.  相似文献   

9.
Utilizing the topographic model of Jovian moon Amalthea (Stooke, 1994) and supposing that its mass density is constant we derived its basic geometrical and dynamical characteristics. For calculations the harmonic model of topography of the degree and order 18 was selected. The model appears to fit the entire surface to a mean accuracy of a few hundred meters, except in the regions localized around longitudes 0° and 180°. On the basis of the harmonic expansion of the topography we estimated the volume (V = 2.43 ± 0.02 km3) and the mean radius of topographyr 0 = (79.7 ± 0.2) km. Generalized moments of inertia up to the order 2, principal moments of inertia and orientation of the principal axes with respect to the original reference frame were also calculated. The results show that although Amalthea has extremely irregular shape it may be treated dynamically as an almost symmetric body (B C). Finally, the set of the Stokes coefficients up to the degree and order 9 was evaluated. The results are verified by direct numerical integration.  相似文献   

10.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

11.
Thermoelastic stress calculations show that if only the outer few hundred kilometers of the Moon was initially molten and if it had a cool interior, i.e., the magma ocean model of the Moon, the highlands should not have any young, compressional tectonic features. In contrast, if the Moon was initially totally molten, the highlands should have 10-km- scale, ?0.5- to 1 × 109-year-old thrust faults. Observations using the Apollo panoramic imagery show that young thrust faults do exist in the highlands. Extrapolation of the data suggests that some 2000 thrust-fault scarps, whose average length is 9 km, are in the highlands. The fault scarps generally occur in series or complexes of four or five scarps. The average length of these complexes is 50 km; the largest observed complex is 120 km long. Extrapolation of the data suggests that there are about 400 such complexes. The ages of the scarps range from 60±30 to 680±250 my, with a possible bias of up to plus a factor of 2 or minus a factor of 4. These scarps are by far the youngest endogenic features on the Moon. The selenographical, size, age, morphological, and azimuth frequency distributions of the scarps can be explained by the effects of the kilobar-level thermoelastic stresses, the 100-bar-level tidal and rotational stresses, and influence by preexisting structures. These results show that the Moon has recently entered an epoch of late stage, global tectonism and favor the concept that the Moon was initially totally molten.  相似文献   

12.
The standard discussion of tidal friction in the Earth-Moon system has been that given by Jeffreys in successive editions ofThe Earth over the past several decades. It is herein shown to contain several erros vitiating its results. The dynamical equation utilised for finding the rate of change of angular velocity of the Earth fails to take account of the fact that the moment of inertia of the Earth may be changing with time, and all subsequent equations which depend on this are incorrect as a result. Simple equations have been left unsolved that ought to have been solved, and the alleged numerical conclusions in no way follow from the values set down initially for the observed apparent secular accelerations of the Moon and Sun.The revised dynamical equations are shown to enable the lunar and solar tidal couples to conform to theory, and may imply that the moment of inertia of the Earth is decreasing at a non-negligible rate. Recognition of this is the key to the whole problem. The only available hypothesis providing adequate contraction is that following from the phase-change theory of the nature of the terrestrial core, and the value of the rate of decrease of moment of inertia calculated from this is in close agreement with that implied by modern improved values of the secular accelerations.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

13.
Supporting evidence for the fission hypothesis for the origin of the Moon is offered. The maximum allowable amount of free iron now present in the Moon would not suffice to extract the siderophiles from the lunar silicates with the observed efficiency. Hence extraction must have been done with a larger amount of iron, as in the mantle of the Earth, of which the Moon was once a part, according to the fission hypothesis. The fission hypothesis gives a good resolution of the tektite paradox. Tektites are chemically much like products of the mantle of the Earth; but no physically possible way has been found to explain their production from the Earth itself. Perhaps they are a product of late, deep-seated lunar volcanism. If so, the Moon must have inside it some material with a strong resemblance to the Earth's mantle. Two dynamical objections to fission are shown to be surmountable under certain apparently plausible conditions.  相似文献   

14.
Evaluation of all reasonable sources of stress in the lunar crust indicates that compressional thermoelastic stresses are the only ones which have been tectonically significant on the global scale during the last 3.5×109 yr of lunar history — i.e., the post-Imbrian. However, the thermoelastic stresses calculated for lunar models which have accretional heating profiles at the beginning of lunar history; i.e., a molten zone only a few hundred kilometers deep and a cool deep interior, are less than 1 kbar in the crust. Such stresses are lower than the more than 1 to 7 kbar needed to initiate thrust faulting in the outer crust according to Anderson's theory of thrust faulting. Thus such accretional models predict that no significant global thrust faulting has occurred during the post-Imbrian and that the crust should currently be seismically quiet on the global scale.In contrast, the compressional thermoelastic stresses generated in a Moon which was initially totally molten, as is the case if the Moon formed by fission, are up to 3.5 kbar in the outer few km of the crust at present. These stresses are well within the range needed to cause thrust faulting in the outer 4 km of the crust. According to this model there should be modest scale (10 km), young ( 0.5 to 1×109 yr old) thrust fault scarps in the highlands.Photoselenological investigations confirm that scarps with the expected age and geometric characteristics are found in the highlands. Thus the currently available photoselenological data support the stress model derived for an initially totally molten Moon, but not one which was molten only in the outer few hundreds of km.  相似文献   

15.
The thermal history and current state of the lunar interior are investigated using constraints imposed by recent geological and physical data. Theoretical temperature models are computed taking into account different initial conditions, heat sources, differentiation and simulated convection. To account for the early formation of the lunar highlands, the time duration of magmatism and presentday temperatures estimated from lunar electrical conductivity profiles, it is necessary to restrict initial temperatures and abundances of radioactivie elements. Successful models require that the outer half of the Moon initially heated to melting temperatures, probably due to rapid accretion. Differentiation of radioactive heat sources toward the lunar surface occurred during the first 1.6 billion years. Temperatures in the outer 500 km are currently low, while the deep interior (radius less than 700 to 1000 km) is warmer than 1000°C, and is of primordial material. In some models there is a partially melted core. The calculated surface heat flux is between 25 and 30 erg/cm2 s.Presently at the Research Triangle Institute, Research Triangle, North Carolina 27709, U.S.A.  相似文献   

16.
Long term evolution of distant retrograde orbits in the Earth-Moon system   总被引:1,自引:0,他引:1  
This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit’s size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon’s solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.  相似文献   

17.
The observed record of impact craters on the surface of the planet Venus can be used to calculate the contribution of fine materials generated by impact processes to the global sedimentary cycle. Using various methods for the extending the population of impact craters with diameters larger than 8 km observed on the northern 25% of the Venus to the entire surface area of the planet, we have estimated how materials ejected from the integrated record of impact cratering over the past 0.5 to 1.0 æ might have been globally distributed. Relationships for computing the fraction of ejected materials from impact craters in a given size range originally developed for the Moon (and for terrestrial nuclear explosion cratering experiments) were scaled for Venus conditions, and the ejecta fragments with sizes less than 30 m were considered to represent those with the greatest potential for global transport and eventual fallout. A similar set of calculations were carried out using the observed terrestrial cratering record, corrected for the missing population of small craters and oceanic impacts that have either been eroded or are unobserved (due to water cover). Our calculations suggest that both Venus and the Earth should have experienced approximately 6000 impact events over the past 0.5 to 1 æ (in the size range from 1 km to about 180 km). The cumulative global thickness of impact-derived fine materials that could have produced from this record of impacts in this time period is most likely between 1–2 mm for Venus, and certainly no more than 6 mm (assuming an enhanced population of large 150–200 km scale impact events). For Earth, the global cumulative thickness is most likely 0.2 to 0.3 mm, and certainly no more than 2 to 3 mm. The cumulative volume of impact ejecta (independent of particle size) for Venus generated over the past 1 æ, when spread out over the global surface area to form a uniform layer, would fall between 2 and 12 meters, although 99% of this material would be deposited in the near rim ejecta blanket (from 1 to 2.3 crater radii from the rim crest), and only 0.02% would be available for global transport as dust-sized particles. Thus, our conclusion is that Venus, as with the Earth, cannot have formed a substantial impact-derived regolith layer over the past billion years of its history as is typical for smaller silicate planets such as the Moon and Mercury. This conclusion suggests that there must be other extant mechanisms for sediment formation and redistribution in the Venus environment, on the basis of Venera Lander surface panoramas which demonstrate the occurrence of local sediment accumulations.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

18.
The discussion of tidal friction in the Earth-Moon system given in successive editions ofThe Earth by Jeffreys is shown to contain a serious dynamical error. When the treatment is corrected, it shows that the moment of inertia of the Earth must be changing. The apparent secular accelerations of the Moon and Sun require a diminishing moment of inertia, and the rate is in agreement with the phase-change hypothesis for the nature of the core.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

19.
We describe interferometric observations of the Asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) and the Auxiliary Telescopes (ATs) of the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (Kaasalainen, M., Mottola, S., Fulchignoni, M. [2002]. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters such as, albedo, thermal inertia and roughness are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m−2 s−0.5 K−1 and preferably in the range between 0 and ∼30 J m−2 s−0.5 K−1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.  相似文献   

20.
Laboratory measurements of seismic wave velocities and electrical properties of Apollo lunar samples and similar material of terrestrial origin are discussed in this paper. Measurements of the electrical properties show that in the frequency range above a few hundred Hz the outer region of the Moon may be considered as a low loss dielectric. This observation supports a longstanding speculation that dry, powdered rocks in which the dielectric loss tangent is frequency-independent over a wide range of frequency are present in the uppermost lunar surface layers. The surface layers of the Moon are likely to have an extremely low electrical conductivity. Thus future electromagnetic probing of the Moon to a few hundred kilometer depth is possible in the few kHz frequency range. Based on ultrasonic experiments with pressure as a variable, we next present the elastic constants and equations of state of lunar materials and characteristic dispersion of seismic wave velocities of the Moon. We find thatP andS wave velocities increase sharply within the first 30 km depth and then level off gradually. Combining this observation with lunar seismic and geophone data, we believe that the first 30 km of the Moon may be interpreted as a scattering region. If H2O exists on the Moon, H2O may occur at some shallow depth beneath the outermost surface layer in solid ice interlocking cracks and pores and mineral grains. The rocks in this permafrost state have relatively low seismic velocity and highQ. If permafrost does exist, we would expect a wide range of electrical conductivity and dielectric constant. Future electromagnetic probing of the Moon should yield very usefull information on the physical state of the lunar interior; when this electrical information is combined with the seismic information, we should learn much more about the internal constitution and the state of the Moon than is known today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号