首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. PT estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and PT estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak PTconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times.  相似文献   

2.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   

3.
A petrogenetic grid for metapelites in the system NKFMASH is presented. The P–T range is investigated in three sections: (1) The high‐ and ultrahigh‐pressure range is discussed in the system NFMASH because phengite is the only stable potassic phase. (2) The transition region is characterised by four NKFMASH‐invariant points that separate high‐pressure glaucophane‐bearing from medium‐pressure biotite‐bearing metapelites. (3) The medium‐pressure range contains the fifth NKFMASH‐invariant point. The univariant reactions of this point terminate the stability range of paragonite, which breaks down to form staurolite or kyanite and plagioclase during decompression and/or heating. As the growth of albitic plagioclase by decomposition of paragonite via continuous reactions may be conspicuous already before these staurolite‐ or kyanite‐producing reactions are reached, such albite porphyroblast schists are typical indicators of a former high‐pressure metamorphic history. Considering the preservation of high‐pressure metapelitic assemblages, those crossing the NKFMASH‐transition region during exhumation commonly dehydrate and preservation is unlikely. Three types of metapelites have a fairly good survival potential: (1) low‐temperature metapelites (up to c. 540 °C) with an exhumation path back into the chlorite + albite stability field, (2) assemblages with chloritoid + glaucophane, and (3) the relatively high‐temperature glaucophane + kyanite and jadeite + kyanite bearing parageneses, that are relatively dry at the onset of exhumation. A comparison with data from the literature shows that these rock types are the most abundant in nature.  相似文献   

4.
The multiple high‐pressure (HP), low‐temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction‐ and continental accretion‐related evolution of the eastern limb of the long‐lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe‐Mg‐carpholite in three metasedimentary units of the Gondwana‐derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single‐continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with PT estimates (chlorite thermometry, phengite barometry, multi‐equilibrium thermobarometry), on carpholite‐bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite‐bearing assemblages were retrogressed through greenschist‐facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post‐collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tav?anl? Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian‐type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll‐back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.  相似文献   

5.
Sodic metapelites with jadeite, chloritoid, glaucophane and lawsonite form a coherent regional metamorphic sequence, several tens of square kilometres in size, and over a kilometre thick, in the Orhaneli region of northwest Turkey. The low‐variance mineral assemblage in the sodic metapelites is quartz + phengite + jadeite + glaucophane + chloritoid + lawsonite. The associated metabasites are characterized by sodic amphibole + lawsonite ± garnet paragenesis. The stable coexistence of jadeite + chloritoid + glaucophane + lawsonite, not reported before, indicates metamorphic pressures of 24 ± 3 kbar and temperatures of 430 ± 30 °C for the peak blueschist facies conditions. These P–T conditions correspond to a geotherm of 5 °C km?1, one of the lowest recorded in continental crustal rocks. The low geotherm, and the known rate of convergence during the Cretaceous subduction suggest low shear stresses at the top of the downgoing continental slab.  相似文献   

6.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

7.
In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a PT evolution involving cooling at pressures of 8–9 kbar from >960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise PT path may be more likely, which would be consistent with the clockwise PT evolution of the extensive “normal” granulites (Tmax <900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.  相似文献   

8.
Petrogenetic grids in the KFMASH and KMnFMASH model systems calculated with the software thermocalc 3.1 are presented for the P–T range 0.5–12 kbar and 450–900 °C, for assemblages involving garnet, muscovite, chloritoid, biotite, chlorite, staurolite, cordierite, spinel, orthopyroxene, K‐feldspar, Al2SiO5 phases, quartz, water and melt. Based on calculated compatibility diagrams and P–T and T–MMn [Mn/(Mg + Fe + Mn)] pseudosections for different metapelitic bulk compositions, the principal conclusions are that the addition of Mn to the KFMASH system: (i) enhances the stability of garnet, and, to a lesser extent, aluminosilicates; (ii) reduces the stability of staurolite, cordierite and, to a lesser extent, chlorite; and (iii) extends the medium pressure stability of muscovite and the low‐P stability field of K‐feldspar. The influence of Mn on individual mineral stabilities is strongly related to rock composition, in particular, to the relative contents of Al2O3 and K2O. For metapelites of a range of compositions and MMn values, P–T pseudosections in the KFMASH system, in most cases, do not adequately predict the mineral assemblages observed in natural assemblages under medium and low‐pressure conditions. In contrast, the P–T pseudosections in the KMnFMASH system generally provide more satisfactory results, suggesting that MnO is one of the non‐KFMASH components that should not be neglected in documenting the phase equilibria of medium‐ and low‐P metapelites.  相似文献   

9.
Using a previously published, internally consistent thermodynamic dataset and updated models of activity–composition relations for solid solutions, petrogenetic grids in the model system KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) and the subsystems KMASH and KFASH have been calculated with the software THERMOCALC 3.1 in the PT range 5–36 kbar and 400–810 °C, involving garnet, chloritoid, biotite, carpholite, talc, chlorite, staurolite and kyanite/sillimanite with phengite, quartz/coesite and H2O in excess. These grids, together with calculated AFM compatibility diagrams and pseudosections, are shown to be powerful tools for delineating the phase equilibria and PT conditions of pelitic high-P assemblages for a variety of bulk compositions. The calculated equilibria and mineral compositions are in good agreement with petrological observation. The calculation indicates that the typical whiteschist assemblage kyanite–talc is restricted to the rocks with extremely high XMg values, decreasing XMg in a bulk composition favoring the stability of chloritoid and garnet. Also, the chloritoid–talc paragenesis is stable over 19–20 kbar in a temperature range of ca. 520–620 °C, being more petrologically important than the previously highlighted assemblage talc–phengite. Moreover, contours of the calculated Si isopleths in phengite in PT and PX pseudosections for different bulk compositions extend the experimentally derived phengite geobarometers to various KFMASH assemblages.  相似文献   

10.
Quartzo‐feldspathic veins emplaced within a migmatite terrane near Wilson Lake in the Grenville Province of central Labrador record a metamorphic event not evident in the host rocks. The discordant veins are undeformed and have undisturbed primary igneous/hydrothermal textures. Most of the veins contain euhedral kyanite, as well as aggregates of kyanite, K‐feldspar, phlogopite and minor dumortierite which are likely pseudomorphs after primary phengite. The reconstructed phengite compositions range from 3.1 to 3.2 Si per 11 oxygen formula unit. The pseudomorph assemblage is interpreted as the product of phengite + quartz melting under H2O‐undersaturated conditions, which brackets P–T conditions of formation to about 9–16 kbar and 775–875 °C. A parallel vein that is likely of the same generation contains the borosilicate phases, dumortierite, prismatine and grandidierite, but no kyanite. The borosilicate assemblages constrain the P–T conditions of vein crystallization to ≥10 kbar and c. 750–850 °C. Vein emplacement is constrained to T ≤ 875 °C at the same pressures, which is well within the kyanite zone. Because the host rocks and veins must have experienced the same P–T history following vein emplacement, the presence of unreacted sillimanite in the host migmatites implies insufficient time for host rock equilibration. Slow reaction rates because of anhydrous conditions are not a likely explanation given the abundance of biotite and hornblende in the host rocks. The ductility implied by the breakdown of a hydrous phase (phengite) and the production of an H2O‐undersaturated melt in the veins contrasts with the apparently brittle behaviour of the host rocks. The absence of deformation since the time of vein emplacement, even at temperatures above 750 °C, suggests that the deep crust in this part of Labrador had a very short residence time under conditions of the kyanite zone. Rapid decompression from those conditions is consistent with quartz + phengite melting and accounts for the relatively brittle behaviour of the terrane as it was uplifted.  相似文献   

11.
Abstract Chloritoid and pyrophyllite occur together in all major goldfields of the Witwatersrand Basin and are widespread in virtually all rock types of the upper Witwatersrand Supergroup, including metaconglomeratic reefs and altered mafic rocks. Both minerals are particularly characteristic of the pelitic horizons intimately associated with reef packages, but they are also developed locally in the regionally persistent metapelites that have basin-wide extent. Pyrophyllite is particularly common in foliated zones, adjacent to quartz veins, and near unconformably overlying auriferous conglomerates. The wide distribution of chloritoid and pyrophyllite in metapelites of the Witwatersrand Basin is attributed to alteration of chlorite-rich shales, rather than to unusual premetamorphic starting materials. This alteration event involved the redistribution of many elements, with up to 40% volume loss, mainly due to removal of silica. Removal of most of the Mg and some Fe accounts for the stabilization of chloritoid and pyrophyllite. Relatively immobile elements included Al, Ti, Nb, Cr, V, P, La and Ce, whereas Si, Fe, Mn, Zn, Co, Ni, Cu, Mg and Ca were lost, and K, Rb and Ba were introduced by an infiltrating fluid. The alteration event is inferred to have been within the chloritoid and pyrophyllite stability field (and thus syn-metamorphic) as bulk chemical changes in metapelites are from chlorite directly towards chloritoid and then pyrophyllite, rather than to lower grade minerals such as kaolinite. Muscovite–chlorite–chloritoid and muscovite–chloritoid–pyrophyllite assemblages are attributed to fluid buffering along appropriate curves, as their production by metamorphism of lower grade mineral mixes is considered unlikely, based on the present bulk rock compositional data. A metamorphic timing for the alteration accounts for the correlation of strongly foliated areas with greater degrees of inferred alteration. The transitions from chlorite to chloritoid to pyrophyllite define zones of increasing alteration. Widespread infiltration as part of peak metamorphism is suggested by the distribution of chloritoid and pyrophyllite, quartz veining and textures. Fluid:rock ratios calculated from a silica budget in one metapelitic horizon exceed 100:1 over many square kilometres. These values need not imply multi-pass fluid flow, as much of the silica migration may be redistribution on a scale of a few metres, from source rocks into veins. Although infiltration during metamorphism may have affected much of the upper Witwatersrand succession, channelized fluid flow within reef packages, along faults and unconformities and in certain metaconglomerates and metapelites is inferred.  相似文献   

12.
Magnesian metamorphic rocks with metapelitic mineral assemblage and composition are of great interest in metamorphic petrology for their ability to constrain PT conditions in terranes where metamorphism is not easily visible. Phase–assemblage diagrams for natural and model magnesian metapelites in the system KFMASH are presented to document how phase relationships respond to water activity, bulk composition, pressure and temperature. The phase assemblages displayed on these phase diagrams are consistent with natural mineral assemblages occurring in magnesian metapelites. It is shown that the equilibrium assemblages at high pressure conditions are very sensitive to a(H2O). Specifically, the appearance of the characteristic HP assemblage chloritoid–talc–phengite–quartz (with excess H2O) in the magnesian metapelites of the Monte Rosa nappe (Western Alps) is due to the reduction of a(H2O). Furthermore, the mineral assemblages are determined by the whole-rock FeO/(FeO+MgO) ratio and effective Al content X A as well as P and T. The predicted mineral associations for the low- and high-X A model bulk compositions of magnesian metapelites at high pressure are not dependent on the X A variations as they show a similar sequence of mineral assemblages. Above 20 kbar, the prograde sequence of assemblages associated with phengite (with excess SiO2 and H2O) for low- and high-X A bulk compositions of magnesian metapelites is: carpholite–chlorite → chlorite–chloritoid → chloritoid–talc → chloritoid–talc–kyanite → talc–garnet–kyanite → garnet–kyanite ± biotite. At low to medium PT conditions, a low-X A stabilises the phengite-bearing assemblages associated with chlorite, chlorite + K-feldspar and chlorite + biotite while a high-X A results in the chlorite–phengite bearing assemblages associated with pyrophyllite, andalusite, kyanite and carpholite. A high-X A magnesian metapelite with nearly iron-free content stabilises the talc–kyanite–phengite assemblage at moderate to high PT conditions. Taking into account the effective bulk composition and a(H2O) involved in the metamorphic history, the phase–assemblage diagrams presented here may be applied to all magnesian metapelites that have compositions within the system KFMASH and therefore may contribute to gaining insights into the metamorphic evolution of terranes. As an example, the magnesian metapelites of the Monte Rosa nappe have been investigated, and an exhumation path with PT conditions for the western roof of the Monte Rosa nappe has been derived for the first time. The exhumation shows first a near-isothermal decompression from the Alpine eclogite peak conditions around 24 kbar and 505°C down to approximately 8 kbar and 475°C followed by a second decompression with concomitant cooling.M. Frey: deceased  相似文献   

13.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

14.
Andalusite porphyroblasts are totally pseudomorphosed by margarite–paragonite aggregates in aluminous pelites containing the peak mineral assemblage andalusite, chlorite, chloritoid, margarite, paragonite, quartz ± garnet, in a NW Iberia contact area. Equilibria at low P–T are investigated using new KFMASH and (mainly) MnCNKFMASH grids constructed with Thermocalc 3.21. P–T and T–X pseudosections with phase modal volume isopleths are constructed for compositions relatively richer and poorer in andalusite to model the assemblages in an andalusite‐bearing rock that contains a thin andalusite‐rich band (ARB) during retrogression. Their compositions, prior to retrogression, are used in the modelling, and have been retrieved by restoring the pseudomorph‐forming elements into the current‐depleted matrix, except for Al2O3 which is assumed to be immobile. Compositional differences between the thin band and the rest of the rock have not resulted in differences in andalusite porphyroblast retrogression. The absence of chloritoid resorbtion implies either a pressure increase at constant reacting‐system composition, or that its composition changed during retrogression at constant pressure, by becoming enriched in the progressively replaced andalusite porphyroblasts. T–X pseudosections at 1 kbar model this latter process using as end‐members in X, first, the restored original rock and ARB compositions, and, then the same process, taking into account the change in composition of both as retrogression proceeded. The MnNCKFMASH pseudosections of rocks with different Al contents facilitate making further deductions on the rock‐composition control of the resulting assemblages upon retrogression. Andalusite eventually disappears in relatively Al‐poor rocks, resulting, as in this study, in a rock formed by chloritoid–chlorite as the only FM minerals, plus margarite–paragonite pseudomorphs of andalusite. In rocks richer in Al, chlorite would progressively disappear and a kyanite/andalusite–chloritoid assemblage would eventually be stable at retrograde conditions. The Al‐silicate, stable during retrogression in Al‐rich rocks, indicates pressure conditions and hence the tectonic context under which retrogression took place.  相似文献   

15.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

16.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

17.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

18.
We have investigated the effects of different Fe2O3 bulk contents on the calculated phase equilibria of low‐T/intermediate‐P metasedimentary rocks. Thermodynamic modelling within the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system of chloritoid‐bearing hematite‐rich metasedimentary rocks from the Variscan basement of the Pisani Mountains (Northern Apennines, Italy) fails to reproduce the observed mineral compositions when the bulk Fe2O3 is determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P–XFe2O3 diagrams, obtaining equilibration conditions of 475 °C and 9–10 kbar related to a post‐compressional phase of the Alpine collision. The introduction of ferric iron affects the stability of the main rock‐forming silicates that often yield important thermobaric information. In Fe2O3‐rich compositions, garnet‐ and carpholite‐in curves shift towards higher temperatures with respect to the Fe2O3‐free systems. The presence of a ferric‐iron oxide (hematite) prevents the formation of biotite in the mineral assemblage even at temperatures approaching 550 °C. The use of P–T–XFe2O3 phase diagrams may also provide P–T information in common greenschist facies metasedimentary rocks.  相似文献   

19.
Summary The high-alumina metapelites and the orthogneisses of the lower tectonic unit of East Rhodope underwent high P/T metamorphism followed by partial reequilibration during decompression under epidote-amphibolite/amphibolite facies to greenschist facies conditions. The high P/T mineral paragenesis in the orthogneisses is: quartz + albite + microcline + phengite (Simax = 7 atoms p.f.u.) + biotite and in the high alumina metapelites: garnet + chloritoid + chlorite + phengite (Simax. = 6.85 atoms p.f u.) + paragonite + quartz. Pressures between 14 and 15.5 kbar, for Tmin = 550°C, are estimated for the high P/T metamorphism. During continuing uplift, staurolite + chlorite, staurolite + biotite and finally andalusite + Fe-ripidolite are grown at the expense of chloritoid in metapelites, while in the orthogneisses oligoclase, still coexisting with albite, is formed; in both rock types the Si content of white K-mica decreases considerably from almost pure phengite to pure muscovite.
Hochdruck-Metamorphose in Gneisen und pelitischen Schiefern der östlichen RhodopeZone, Nord-Griechenland
Zusammenfassung Die Aluminium-reichen Metapelite und die Orthogneise der unteren tektonischen Einheit der östlichen Rhodope-Zone wurde unter hohen Drucken und Temperaturen metamorphosiert. Darauf folgte eine teilweise Reequilibration unter Druck-Entlastung bei Bedingungen der Epidot-Amphibolit/Amphibolit bis Grünschiefer Fazies. Die Hoch-P/T Mineral-Assoziation in den Orthogneisen besteht aus: Quarz + Albit + Mikroklin + Phengit (Simax = 7 atoms p.f.u.) + Biotit und in den Aluminium-reichen Metapeliten: Granat + Chloritoid + Chlorit + Phengit (Simax = 6.85 atoms p.f.u.) + Paragonit + Quarz. Drucke zwischen 14 and 15.5 kbar für Tmin = 550°C wurden für die Hoch- P/T Metamorphose berechnet. Während andauernder Anhebung bildeten sich Staurolit + Chlorit, Staurolit + Biotit und schließlich Andalusit + Fe-Ripidolit auf Kosten von Chloritoid in den Metapeliten, während in den Orthogneisen Oligoklas der noch mit Albit koexistiert, gebildet wurde; in beiden Gesteinstypen nimmt der Si-Gehalt heller Kaliglimmer von fast reinem Phengit bis zu reinem Muskowit ab.
  相似文献   

20.
The HP‐UHP metamorphic belt of western Tianshan in northwestern China is a rarely preserved oceanic UHP terrane which consists predominantly of meta‐siliciclastic rocks, occasionally accompanied by lens‐shaped metabasites. The metapelites and metagreywackes from the Habutengsu Valley and adjacent area within this belt contain quartz, albite, garnet, white mica, chlorite and rutile/titanite, with or without minor amounts of barroisite, glaucophane, clinozoisite, allanite, graphite, carbonate and tourmaline. Included in coarse‐grained garnet, pseudomorphs of clinozoisite + paragonite after lawsonite are common, seldom also together with inclusions of chloritoid, jadeite and glaucophane. In the northern Habutengsu area, garnet is compositionally characterized by similar cores with consistently low‐Ca content. Similar garnet armouring coesite has been reported in UHP schists from the same area. Deduced P–T conditions during formation of these Ca‐poor garnet cores are 25–31 kbar and 430–510 °C, which are consistent with the computed stability of the observed assemblage Grt + Gln + Lws ± Jd ± Cld in the coesite stability field. Thus, the occurrences of the UHP metapelites and metagreywackes define an internally coherent UHP unit in the north of the Habutengsu area, the spatial extension of which is much larger than previously known. Compared with the northern ones, the southern metapelites and metagreywackes in the Habutengsu area consist of similar minerals and have similar bulk rock compositions but significantly different garnet chemistry, indicating an abrupt variation in P–T conditions during garnet growth. The derived conditions initiating the garnet growth for the southern rocks in a similar range (18–21 kbar and 450–500 °C) and thus constrain a coherent HP unit in the south of the Habutengsu area. The juxtaposition of two exhumed slices of contrasting metamorphic grades probably indicates the change of subduction dynamics of the palaeo‐Tianshan oceanic crust, the subduction polarity (from south to north) of which accounts for the spatial relationship between these two units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号