首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

2.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

3.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

4.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

5.
Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly k  相似文献   

6.
The Daliangzi Pb-Zn deposit is a large deposit hosted in the Sinian Dengying Formation dolostone, located in the Sichuan-Yunnan-Guizhou ore concentration area. Ore minerals are mianly sphalerite, galena, and gangue minerals consist of dolomite, quartz and calcite. The metallogenic stages may be divided into sphalerite-pyrite-carbon stage, sphalerite-galena stage and galena-chalcopyrite-carbonate stage. The ore-forming fluid is basin brine, which is characterized by medium-low temperature of 117.5 ℃ to 320.3 ℃ and medium salinity of 5.11% NaCleqv to 18.96% NaCleqv, moreover, the abundant CH4 and pitch in the fluid inclusions indicate that the participation of organic matter in the mineralization. The δ13CV-PDB and δ18OSMOW values of the Dengying Formation dolostone are similar to that of marine carbonate, revealing that the dolostone belongs to marine carbonate. Both the δ13CV-PDB and δ18OSMOW values of hydrothermal calcites are lower than that of the Dengying Formation dolostone, which may result from dissolution of the Dengying Formation dolostone. The δ34S values of ore minerals are mainly in the range of 9.8‰-20.8‰, indicating the sulfur may come from thermochemical reduction of marine sulfate in the Dengying Formation. The 207Pb/204Pb versus 206Pb/204Pb diagram manifests that Pb is crustal origin, and likely comes mainly from the wall rocks and less from the basement. (87Sr/86Sr)i ratios of sphalerites and hydrothermal calcite are higher than that of the Dengying Formation dolostone, indicating that the ore-forming fluid flew through the basement. In conclusion, the ore-forming fluid was basin brine, which extracted the metallogenic materials, Pb and Zn, from the basement and wall rocks. When the ore-forming fluid reached the "black fractured zones", carbonized tectonic breccia zone, S2- was produced by the thermochemical reduction reaction under the influence of the organic matter, and interaction between the S2- and Pb2+, Zn2+, resulted in the precipitation of ore metals. © 2018, Science Press. All right reserved.  相似文献   

7.
The relationship between trace elements in coal and organic functional groups of coal,also some of aromatic structure,was investigated by using curve fitting of infrared spectra.Cluster analysis was also performed according to the degree of affinity of organic groups to the trace elements.The results show that there is a possibility that trace elements,especially LREE,were bound to peripheral organic functional groups of middle rank coal macromolecule.The most possible functional group that binds trace element is the hydroxyl,and to the less degree,the asymmetric-CH_3andCH_2 stretching,-CH_3 stretching,etc.The degree of affinity of trace elements to different functional groups varies.The tendency obeys the natural structural changing law of trace elements—the periodic law.The deviation of some trace elements from this regular trend is attributed to the deviation of intrinsic"confusion degree"(conventional molar entropy)of the matter system of coal basin,which is affected by the inner and outer factors during the evolution.  相似文献   

8.
Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.  相似文献   

9.
Coal measure source rocks, located in the Xihu Sag of the East China Sea Shelf Basin, were analyzed to define the hydrocarbon generation potential, organic geochemistry/petrology characteristics, and coal preservation conditions. The Pinghu source rocks in the Xihu Sag are mainly gas-prone accompany with condensate oil generation. The coals and shales of the Pinghu Formation are classified from "fair" to "excellent" source rocks with total organic carbon(TOC) contents ranging from 25.2% to 77.2% and 1.29% to 20.9%, respectively. The coals are richer in TOC and S1+S2 than the shales, indicating that the coals have more generation potential per unit mass. Moreover, the kerogen type of the organic matter consists of types Ⅱ-Ⅲ and Ⅲ, which the maturity Ro ranges from 0.59% to 0.83%. Petrographically, the coals and shales are dominated by vitrinite macerals(69.1%–96.8%) with minor proportions of liptinite(2.5%–17.55%) and inertinite(0.2%–6.2%). The correlation between maceral composition and S1+S2 indicates that the main contributor to the generation potential is vitrinite. Therefore, the coals and shales of the Pinghu Formation has good hydrocarbon generation potential, which provided a good foundation for coal measure gas accumulation. Furthermore, coal facies models indicates that the Pinghu coal was deposited in limno-telmatic environment under high water levels, with low tree density(mainly herbaceous) and with low-moderate nutrient supply. Fluctuating water levels and intermittent flooding during the deposition of peat resulted in the inter-layering of coal, shale and sandstone, which potentially providing favorable preservation conditions for coal measure gas.  相似文献   

10.
The comparative study of organic matter in carbonate rocks and argillaceous rocks from the same horizon indicates that the organic thermal maturities of carbonate rocks are much lower than those of argillaceous rocks .Ana extensive analysis of extracted and inclused organic matter from the same sample shows that inclused organic matter is different from extracted organic matter,and the thermal maturity of the former is usually lower than that of the latter in terms of biomarker structural parameters.It seems that carbonate mineras could preserve organic matter and retard organic maturation.The inclused organic matter,abundant in most carbonate rocks,will be released from minerals and transformed into oil and gas during the high-thermal maturity stage.  相似文献   

11.
Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.  相似文献   

12.
Marine strata are widely exposed in the Hushan and Chaohu areas, Lower Yangtze region. As biomarker geochemistry of the strata has not been well documented, this paper deals with the biomarker composition of representative samples collected from the Silurian, Carboniferous and Triassic systems and their geological implications, thus providing clues to marine organic matter. On the basis of experimental results, it is shown that abundant biomarkers (e.g. n-alkanes, isoprenoids, terpanes and steranes) were detected. As organic matter in the strata is highly to over mature in general based on petrologic microobservation, some biomarkers (mainly n-alkanes) except terpanes and steranes cannot reflect the source, depositional environment and maturity of organic matter. Thus, primarily based on analyses of the terpanes and steranes, it is suggested that organic matter in the Silurian and Carboniferous strata is derived mainly from lower organisms, while higher plants are predominant in the Triassic organic matter. This further indicates that the depositional environment may have transformed from the marine to continental facies in the Late Triassic. These results provide new evidence for the study of regional depositional evolution, and have enriched the study of biological composition of organic matter. In addition, the biomarker geochemistry of organic matter at high to over maturation stage is addressed.  相似文献   

13.
碳酸盐矿物的包裹有机质及其生油意义   总被引:5,自引:3,他引:5  
Fluorescent slice observations have revealed a considerable amount of organic matter enclosed in carbonate minerals, most of it giving off yellow-brown fluorescence and being zonally distributed in calcite and dolomite. The amount of enclosed organic matter released from the enclosure when treated with HCl is two times higher than that of extractable organic mattes in the same rock sample. In comparison to the extractable organic matter, the enclosed organic matter is possessed of some compositional characters of its own. In terms of the distribution of biological markess, it is suggested that the enclosed organic matter may be low in maturity relative to the extractable organic matter in the same source rock.Results of the simulating experiments under high temperatures and pressures show that this kind of organic matter enclosed in carbonate minerals can be converted into oil-generating substances. Therefore, detailed studies of the enclosed organic matter are of much help to the evaluation of oil-generating potentiality of carbonate source rocks.  相似文献   

14.
The maximum palaeotemperature of oil-bearing sandstones in the UpperTriassic in the eastern Ordos basin has been determined by using many methods including thevitrinite reflectance, fluid inclusion, apatite fission track, illite crystallinity, chlorite polytypeand diagenetic change of authigenic minerals. The thermal gradient in the Late Mesozoic wasabout 2.9-3.0℃/100m. The Upper Triassic was in a mature stage of organic matter andhydrocarbon began to be generated and migrated during this period. The palaeotemperatures ofoil-bearing sandstones were in the range of 88-110℃; those for the generation and migrationof oil ranged from 112 to 122℃. The thickness of the denuded strata overlying the UpperTriassic was 2465-2750m. The present burial depth of oil-bearing sandstones is generally from400 to 1200m. At a depth of ca. 1900m, the temperature may reach 140℃. Below this depth,organic matter was supermature and mainly generated gas.  相似文献   

15.
Natural organic matter (NOM) is an important ingredient in soil which can improve physical, chemical, and biological properties of soils and nutrient supplies. In this study, we investigated the spectral features and potential availability of phosphorus (P) in the IHSS Elliott Soil humic acid standard (EHa), Elliott soil fulvic acid standard Ⅱ (EFa), Waskish peat humic acid reference (WHa), and Waskish peat fulvic acid reference (WFa) by fluorescence spectroscopy, FT-IR, solution 31P NMR, 3-phytase incubation and UV irradiation. We observed more similar spectral features between EHa and EFa as well as between WHa and WFa than between the two humic acids or two fulvic acids themselves. Phosphorus in WHa and WFa was mainly present in the orthophosphate form. However, only about 5% was water soluble. After treatment by both UV irradiation and enzymatic hydrolysis, soluble orthophosphate increased to 17% of WHa P, and 10%o of WFa P. Thus, it appears that a large portion of P in Waskish peat humic substances was not labile for plant uptake. On the other hand, both orthophosphate and organic phosphate were present in EHa and EFa. Treatment by both UV irradiation and enzymatic hydrolysis increased soluble orthophosphate to 67% of EHa P and 52% of EFa P, indicating that more P in Elliott soil humic substances was potentially bioavailable. Our results demonstrated that source (soil vs. peat) was a more important factor than organic matter fraction (humic acid vs. fulvic acid) with respect to the forms and lability of P in these humic substances.  相似文献   

16.
Samples around a coal gangue dump of the Gequan Coal Mine were collected in April 2009. GC (gas chromatography) and GC/MS (gas chromatography/mass spectrometry) were employed to analyze the composition of organic matter in the samples. ICP-MS (inductively coupled plasma mass spectrometry) was used to determine the concentrations of heavy metals. The contents of organic extracts are within the range of 140-750 mg/kg. Alkand aro-ratios are relatively high. Compared to those of the background sample (GQ13 ), the contents of saturated hydrocarbon compounds in all the samples are relatively high. The contents of polycyclic aromatic hydrocarbons (PAHs) are relatively high with the distance getting closer to the coal gangue dump. These indicate that organic matter in the samples is from coal particles of the coal gangue dump. The distributions of heavy metals are very similar: the contents decrease with distance from the dump, which indicates that the harmful heavy metals from the coal gangue dump have polluted as thick as at least 500 m.  相似文献   

17.
The occurrences of associated elements and their genetic factors in the No. 30 coal seam in the Zhijin Coalfield were studied using instrumental neutron activation analysis, inductively coupled plasma-atomic emission spectroscopy, and a scanning electron microscope equipped with an energy-dispersive X-ray analyzer. And, a microscope photometer system (Leitz MPV-Ⅲ) was used to observe the characteristics of coal petrology. According to the influence degree by the siliceous low-temperature hydrothermal fluids, the organic matter is divided into four types: A, B, C, and D of the hydrothermally-altered organic matter (HAOM). The study shows that the high content of Fe (2.31%) is not from pyrite, but mostly from the siliceous low-temperature hydrothermal fluids. The occurrences of the associated elements in the four organic matter types are different. The contents of Fe, Si, and Al are decreasing, but S and Cu are increasing in the order of the HAOM-A, HAOM-B, HAOM-C, and HAOM-D. The losing rate of sulfur i  相似文献   

18.
More and more evidence indicates that organic matter (OM) in immature organicrich sediments and sedimentary rocks is chemically adsorbed onto the outer surfaces of minerals and into interlayer (inner) surfaces of smectitic clay minerals in the form of amorphous molecular-scale carbon. But there have been few reports about the occurrence of highly mature OM in marine black shales ( petroleum source rocks ). The occurrence of highly mature OM in the black shales of basal Cambrian from northern Tarim Basin is studied in this paper. Based on the comprehensive analyses of total organic carbon contents (TOC) , maximum thermolysis tempera tures ( Tmax ) of OM, mineral surface areas (MSA) ,and scanning electronic microscopic (SEM) and transmission electronic microscopic (TEM) observations of the black shales, it is concluded that the highly mature OM in the marine black shales of the basal Cambrian from northern Tarim Basin occurs in particulates ranging in size from 1 to 5 μm in diameter. Through the contrast of the occurrence of the highly mature OM in the black shales with that of the immature ones in modern marine continental margin sediments, some scientific problems are proposed, which are worth to study further in detail.  相似文献   

19.
Coals from Guizhou Province, Southwest China, attract many researchers' attention for their high concentrations of hazardous trace elements, sulphur and mineral components. Trace elements in coals have diverse modes of occurrence that will greatly influence their migration in the process of coal preparation. Mode of occurrence is also important in determining the partitioning during coal combustion. The coal floatation test by progressive release was used to study the migration of trace elements and mineral components in the process of froth floatation. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the absolute concentrations of trace elements including As, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn in the parent coals and the floatation fractions. Precise determination of the mineral matter percentage in coals was obtained by low-temperature ashing. The mineral compositions in coals were quantified using Rietveld-based X-ray diffraction analysis package on low-temperature ash. Scanning electron microscope equipped with energy dispersive X-ray detector was used to provide information on the forms of occurrence of mineral components in coal. Five floatation fractions were obtained from the pulverized coal samples. The contents of trace elements and mineral components decrease from the first tailings to the last cleaned coal. The concentrations of trace elements and mineral components in parent coals and different floatation samples show that trace elements and mineral components are mainly concentrated in the first tailings samples. Nearly 60% of mineral components are enriched in the first tailings, whereas less than 1.3% remains in the cleaned coal. The ratio of sixteen trace elements concentrations in the first tailings to the corresponding concentrations in the cleaned coal ranges from 1.6 to 22.7. Quantitative mineralogical analysis results using the full-profile general structure analysis system (GSAS) showed that the main compositions of LTA include quartz, calcite, kaolinite, pyrite, chlorite, montmorillonite, illite, anatase and pyrite.  相似文献   

20.
The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine source rocks in the Tarim Basin and have large shale gas resource potential. The Cambrian–Ordovician shales were mainly deposited in basin–slope facies with thicknesses between 30–180 m. For shales buried shallower than 4500 m, there is high organic matter abundance with TOC (total organic carbon) mainly between 1.0% and 6.0%, favorable organic matter of Type I and Type II, and high thermal maturity with RoE as 1.3%–2.75%. The mineral composition of these Cambrian–Ordovician shale samples is mainly quartz and carbonate minerals while the clay minerals content is mostly lower than 30%, because these samples include siliceous and calcareous shale and marlstone. The Cambrian and Ordovician shales are compacted with mean porosity of 4% and 3%, permeability of 0.0003×10?3–0.09×10?3 μm2 and 0.0002×10?3–0.11×10?3 μm2, and density of 2.30 g/m3 and 2.55 g/m3, respectively. The pores in the shale samples show good connectivity and are mainly mesopore in size. Different genetic types of pores can be observed such as intercrystal, intergranular, dissolved, organic matter and shrinkage joint. The reservoir bed properties are controlled by mineral composition and diagenesis. The maximum adsorption amount to methane of these shales is 1.15–7.36 cm3/g, with main affecting factors being organic matter abundance, porosity and thermal maturity. The accumulation characteristics of natural gas within these shales are jointly controlled by sedimentation, diagenesis, hydrocarbon generation conditions?, reservoir bed properties and the occurrence process of natural gas. The natural gas underwent short-distance migration and accumulation, in-place accumulation in the early stage, and adjustment and modification in the later stage. Finally, the Yulin (well Y1) and Tazhong (well T1) areas are identified as the targets for shale gas exploration in the Tarim Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号