共查询到20条相似文献,搜索用时 9 毫秒
1.
This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory. 相似文献
2.
圆柱涡激振动问题一直以来备受关注,分离盘作为涡激振动抑制装置得到广泛研究。分离盘长度L与圆柱直径D之比L/D是影响抑制效果的主要因素。运用有限体积法结合RANS方程与一定的湍流模式离散和求解流场,通过编写自定义程序,使用动网格模拟结构物的运动带来的流域边界的变化,针对弹性支撑的圆柱及附加长度为0.5 D的分离盘模型,在约化速度Ur为2.5~13的情况下,对涡激振动及其抑制进行研究。结果表明:分离盘可以抑制甚至消除圆柱涡激振动,99%以上的振幅被抑制;锁定区始点被推后,锁定区变窄;附加分离盘的圆柱阻力和升力被抑制;其斯特鲁哈数(St)稍高于单圆柱St但差别不大。 相似文献
3.
1 .Introduction Risers ,in deep water and strong current environments ,are prone to vortex-induced vibrations(VIV) .Vortex-inducedforces may excite the risersintheir normal modes of transverse direction.Un-der the“lock-in”condition,large resonant oscill… 相似文献
4.
The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV) of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH) model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure’s wake area.A damp... 相似文献
5.
海洋立管的涡激振动会对立管结构的疲劳寿命产生严重的影响。提出1种月牙肋抑振装置,通过在室内水槽中进行物理模型试验,研究该装置在涡激振动情况下对立管的抑振作用。测得该装置在立管表面不同布置方式时顺流向及横流向振动的应变时程曲线,使用DASP软件对所测数据进行分析处理,得到立管的振动幅值和功率谱。试验结果表明:这种月牙肋抑振装置可明显降低立管模型的振动幅值,且对振动频率有一定的影响,同时也表明不同的布置方式对立管的抑振效果也不相同。 相似文献
6.
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface.This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter,while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder. 相似文献
7.
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder. 相似文献
8.
Influences of the Helical Strake Cross-Section Shape on Vortex-Induced Vibrations Suppression for A Long Flexible Cylinder 总被引:2,自引:0,他引:2
An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the effects of strakes’ cross-section on the vortex-induced vibrations (VIV) suppression of a flexible cylinder. The square-sectioned and round-sectioned helical strakes were selected in the experimental tests. The uniform current was generated by towing the cylinder models along the tank using a towing carriage. The Reynolds number was in the range of 800–16000. The strain responses were measured by the strain gages in cross-flow (CF) and in-line (IL) directions. A modal analysis method was adopted to obtain the displacement responses using the strain signals in different measurement positions. The comparison of the experimental results among the bare cylinder, square-sectioned straked cylinder and round-sectioned straked cylinder was performed. The helical strakes can effectively reduce the strain amplitude, displacement amplitude, response frequencies and dominant modes of a flexible cylinder excited by VIV. And the mean drag coefficients of straked cylinders were approximately consistent with each other. In addition, the square-sectioned and round-sectioned strakes nearly share the similar VIV reduction behaviors. Sometimes, the strakes with round-section represent more excellent effects on the VIV suppression of response frequency than those with square-section. 相似文献
9.
10.
《中国海洋工程》2015,(5)
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser. 相似文献
11.
12.
Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser. 相似文献
13.
《中国海洋工程》2020,(4)
Vortex-induced vibration(VIV) for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering. In this paper, a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases. Firstly, the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows. Then, forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T* and combined ratio r. The combined flow cases are classified into three categories to investigate the effect of r on cylinder's dynamic response, and the effect of T* is described under long and short period cases. Finally, fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T*. The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis. 相似文献
14.
A Finite Volume Method with Unstructured Triangular Grids for Numerical Modeling of Tidal Current 总被引:1,自引:1,他引:1
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields. 相似文献
15.
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number. 相似文献
16.
Experimental Study on Vortex-Induced Vibrations of Submarine Pipeline near Seabed Boundary in Ocean Currents 总被引:2,自引:3,他引:2
1 .IntroductionThe submarine pipeline is a commonfacility widely usedfor offshore oil and gastransport . Whena pipeline is installed on a seabed and not buried,unsupportedspans may exist insomelocations ,es-peciallyinthe uneven zones of the seabed.The spa… 相似文献
17.
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses. 相似文献
18.
19.
Wave forces acting on a vertical cylinder at different locations on a slope beach in the near-shore region are investigated considering solitary waves as incoming waves. Based on the Reynolds-averaged Navier-Stokes equations and the k-ε turbulence model, wave forces due to the interaction between the solitary wave and cylinder are simulated and analyzed with different incident wave heights and cylinder locations. The numerical results are first compared with previous theoretical and experimental results to validate the model accuracy. Then, the wave forces and characteristics around the cylinder are studied, including the velocity field, wave surface elevation and pressure. The effects of relative wave height, Keulegan-Carpenter(KC) number and cylinder locations on the wave forces are also discussed. The results show that the wave forces exerted on a cylinder exponentially increase with the increasing incident wave height and KC number. Before the wave force peaks, the growth rate of the wave force shows an increasing trend as the cylinder moves onshore. The cylinder location has a notable effect on the wave force on the cylinder in the near-shore region. As the cylinder moves onshore, the wave force on the cylinder initially increases and then decreases. For the cases considered here, the maximum wave force appears when the cylinder is located one cylinder diameter below the still-water shoreline. Furthermore, the fluid velocity peaks when the maximum wave force appears at the same location. 相似文献
20.
The vortex-induced vibration test of the deep-sea riser was carried out with different excitation water depths in the wave-current combined water flume.By dimensionally changing the multi-stage water depth and hydrodynamic parameters such as outflow velocity at various water depths,the dynamic response parameters such as dominant frequency,dimensionless displacement and vibration trajectory evolution process of the riser under different excitation water depths were explored to reveal the sensitive characteristics of the dynamic response of vortexinduced vibration of the risers under different excitation water depths.The results show that different excitation water depths will change the additional mass of the riser and the fluid damping and other parameters,which will affect the spatial correlation and stability of the vortex shedding behind the riser.In the lock-in region,the distribution range of the characteristic frequency becomes narrow and centered on the lock-in frequency.The increase of the excitation water depth gradually advances the starting point of the lock-in region of the riser,and at the same time promotes the excitation of the higher-order vibration frequency of the riser structure.Within the dimensionless excitation water depth,the dominant frequency and dimensionless displacement are highly insensitive to the excitation water depth at high flow velocity.The change of the excitation water depth will interfere with the correlation of the non-linear coupling of the riser.The“8-shaped”gradually becomes irregular,and the vibration trajectories of the riser show“O-shape”,“X-shape”and“Crescent-shape”. 相似文献