首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, Niu and Yu (2011) presented an analytical solution of the long wave refraction by a submerged circular hump. The geometry of the hump was assumed to be axi-symmetric and the water depth over the hump region was described by a positive constant plus a power function of the radial distance with an arbitrary value of the power exponent, i.e., h = h1 + βrs, where h1 is the water depth at the crest of the hump. Their general hump is an extension of the paraboloidal hump (i.e., s = 2) studied by Zhang and Zhu (1994) and Zhu and Harun (2009). Because of this extension in the topography of the hump, the problem to seek a general analytical solution to the long-wave equation becomes much more complicated and the solution technique need to be more skillful, especially for the case with the exponent s being a rational, see Eq. (17) in Niu and Yu (2011).  相似文献   

2.
A new analytic solution of the mild-slope long wave equation is derived for studying the effects of bottom topography on combined refraction and diffraction. The solution is essentially of a series form involving the Bessel functions of real orders but is found to be singular as the bottom tends to be parabolic. Numerical evaluation of the solution nearby the singularity requires some special considerations. The particular solution under the singular condition is also given. Study on combined refraction and diffraction for waves around a circular island on the top of a shoal, which is radially described by a power function with two independent parameters, indicates that there exist an extremely high wave zone near the top of a hyperparabolic shoal. It is also found that the intensity of wave ray focusing increases significantly as the mean slope decreases. A direct consequence of the wave ray focusing is the concentration of wave energy and an increase of the maximal wave runup height around the island.  相似文献   

3.
A combined wave refraction-diffraction numerical model was developed to predict wave conditions around an arbitrary island. The methodology was based on the mild-slope equation, solved using a finite difference scheme with a marching procedure. The new model reduced the computer's memory demand considerably in comparison with finite-element, parabolic, error vector propagation and other finite difference approaches, and could therefore predict wave conditions for a large coastal area under given offshore boundary-wave conditions. Laboratory data on wave conditions under submerged circular and elliptical shoal conditions were selected to validate the numerical results. Good agreement was observed in all cases. Wave characteristics around an island were predicted using this model with the given deep-water wave condition. The model can predict wave conditions for any island with a mild-slope coastline.  相似文献   

4.
In this paper, an exact analytic solution in terms of Taylor series to the explicit modified mild-slope equation (EMMSE) for wave scattering by a general Homma island is constructed and the convergence of the series solution is analyzed. To validate the new analytic solution, comparisons are made against the existing solutions including analytic solutions to both the long-wave equation and Helmholtz equation, approximate analytic solutions to the modified mild-slope equation, numerical solutions to the mild-slope equation and experimental solutions. Because of the use of the governing equation EMMSE together with mass-conserving matching conditions along the toe of the shoal, the present model is valid for not only waves in the whole spectrum from long waves to short waves but also bathymetries with the maximal seabed slope being as high as 4.27:1. Since the general Homma island is an extension of the original Homma island, the present solution can be very conveniently used to study the effects of bottom topography on combined refraction and diffraction. It is found that the larger the shoal size is, the more significant the wave amplification against the cylinder is.  相似文献   

5.
Analytic solution of long wave propagation over a submerged hump   总被引:1,自引:0,他引:1  
A new analytical solution of the long wave refraction by a submerged circular hump is presented. The geometry of the hump is assumed to be axisymmetric and be described by a power function in the radial direction with arbitrary values of both the exponent and the scaling factor. The submergence of the hump is also variable. The water surface elevation governed by the long wave version of the mild slope wave equation is solved by separation of variables, and a series solution of the Frobenius type is obtained. The solution is shown to be valid when the hump is sufficiently submerged or is of a relatively small height. Matching method is employed to illustrate the refraction of long waves under given conditions of incidence. Effects of the shape, the scale, and the submergence of the hump on wave refraction are discussed.  相似文献   

6.
In this study, we derive an analytical solution for long waves over a circular island which is mounted on a flat bottom. The water depth on the island varies in proportion to an arbitrary power, γ, of the radial distance. Separation of variables, Taylor series expansion, and Frobenius series are used to find the solutions, which are then validated by comparing them with previously developed analytical solutions. We also investigate how different wave periods, radii of the island toe, and γ values affect the solutions. For a circular island with a small value of γ (e.g. γ = 2/3, as in the equilibrium beach (Bruun, 1954)), the wave rays approaching near the island center reach the coastline, whereas the rays approaching away from the center bend away from the coastline, leading to smaller wave amplitudes along the coast. However, for a circular island with a large value of γ, e.g. γ = 2, all the rays on the island reach the coast, giving large coastline wave amplitudes. If the island domain is small compared to the wavelength, the wave amplitudes on the coastline do not increase significantly; however, when the island domain is not small, the wave amplitudes increase significantly. If γ is also large, the amplitudes can be so large as to cause a disaster on the island.  相似文献   

7.
In the present paper, by introducing the effective wave elevation, we transform the extended ellip- tic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)’s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly vary- ing topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.  相似文献   

8.
波浪在传播过程中遇到岛屿就会发生绕射。本文使用混合元方法对修正型缓坡方程进行了数值求解,并与KUO et al的解析解进行了比较验证。在此基础上研究了工程尺度背景下,波浪在三维圆形岛地形上的绕射,计算了不同入射波浪周期、浅滩形状参数和岛屿尺寸情况下,沿波浪传播方向断面上和岛屿岸线上的相对波高大小。计算结果表明:随着入射波周期的减小、浅滩形状参数的增大和岛屿尺寸的减小,圆形岛迎浪侧的相对波高振荡幅度、圆形岛背浪侧的相对波高大小以及岛屿岸线上的相对波高振幅和大小均随之增大。不同情况下,岛屿岸线上的相对波高最大值大多数发生在迎浪点,个别发生在迎浪点两侧20°~25°处;最小值发生在背浪点两侧30°附近。  相似文献   

9.
水下圆形浅滩附近波浪绕射的计算   总被引:2,自引:0,他引:2  
采用波数矢量无旋和波能守恒方程对圆形浅滩附近水域波浪绕射进行了数值计算,计算模型中采用Battjes关系与波数矢量无旋,波能量守恒方程一起联合求解圆形浅滩附近水域波浪折射影响下的波浪要素。本文的数值计算模型对圆形浅滩水域波浪折射绕射现象的验证结果表明,计算所得结果与试验结果是吻合的,数学模型是可靠和合理的,具有实用价值。  相似文献   

10.
An analytic solution to the mild slope equation is derived for waves propagating over an axi-symmetric pit located in an otherwise constant depth region. The water depth inside the pit decreases in proportion to an integer power of radial distance from the pit center. The mild slope equation in cylindrical coordinates is transformed into ordinary differential equations by using the method of separation of variables, and the coefficients of the equation in radial direction are transformed into explicit forms by using the direct solution for the wave dispersion equation by Hunt (Hunt, J.N., 1979. Direct solution of wave dispersion equation. J. Waterw., Port, Coast., Ocean Div., Proc. ASCE, 105, 457–459). Finally, the Frobenius series is used to obtain the analytic solution. Due to the feature of the Hunt's solution, the present analytic solution is accurate in shallow and deep waters, while it is less accurate in intermediate depth waters. The validity of the analytic solution is demonstrated by comparison with numerical solutions of the hyperbolic mild slope equations. The analytic solution is also used to examine the effects of the pit geometry and relative depth on wave transformation. Finally, wave attenuation in the region over the pit is discussed.  相似文献   

11.
For Navier-Stokes equation model using the VOF scheme, Lin and Liu (Lin, P. and Liu, P.L.-F. (1999). Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port Coast. Ocean Eng., 125 (4), 207–215.) developed an internal wave-maker method for which a mass source function of the continuity equation was used to generate target wave trains. Using this internal wave-maker method, various numerical experiments have been conducted without any problems due to waves reflected by a wave-maker. In this study, an internal wave-maker method using a momentum source function was proposed. Various numerical simulations in two and three dimensions were performed using the momentum source wave-maker applied to the RANS equation model in a CFD code, FLUENT. To verify their applicability in 2 dimensions, the computational results obtained using the momentum source wave-maker in a channel of constant depth were compared with the results obtained by using the mass source wave-maker and with the analytical solutions. And the results of the present numerical simulations of hydraulic experiments, which represent nonlinear waves on a submerged shoal and breaking waves on a plane beach, were compared with measurements. The comparisons showed good agreements between them. To see their applicability into 3-dimensional cases, the present results in a basin of constant depth were compared with the analytical solutions, and they agreed well with each other. In addition, vertical variation of longshore current was presented by using the 3-dimensional simulation results.  相似文献   

12.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

13.
Based on the extended mild-slope equation, the wind wave model (WWM; Hsu et al., 2005) is modified to account for wave refraction, diffraction and reflection for wind waves propagating over a rapidly varying seabed in the presence of current. The combined effect of the higher-order bottom effect terms is incorporated into the wave action balance equation through the correction of the wavenumber and propagation velocities using a refraction–diffraction correction parameter. The relative importance of additional terms including higher-order bottom components, the wave–bottom interaction source term and wave–current interaction that influence the refraction–diffraction correction parameter is discussed. The applicability of the proposed model to calculate a wave transformation over an elliptic shoal, a series of parallel submerged breakwater induced Bragg scattering and wave–current interaction is evaluated. Numerical results show that the present model provides better predictions of the wave amplitude as compared with the phase-decoupled model of Holthuijsen et al. (2003).  相似文献   

14.
On the basis of the previous studies, the simplest hyperbolic mild-slope equation has been gained and the linear time-dependent numerical model for the water wave propagation has been established combined with different boundary conditions. Through computing the effective surface displacement and transforming into the real transient wave motion, related wave factors will be calculated. Compared with Lin’s model, analysis shows that calculation stability of the present model is enhanced efficiently, because the truncation errors of this model are only contributed by the dissipation terms, but those of Lin’s model are induced by the convection terms, dissipation terms and source terms. The tests show that the present model succeeds the merit in Lin’s model and the computational program is simpler, the computational time is shorter, and the computational stability is enhanced efficiently. The present model has the capability of simulating transient wave motion by correctly predicting at the speed of wave propagation, which is important for the real-time forecast of the arrival time of surface waves generated in the deep sea. The model is validated against analytical solution for wave diffraction and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope. Good agreements are obtained. The model can be applied to the theory research an d engineering applications about the wave propagation in a biggish area.  相似文献   

15.
Wave motions around different submerged structures   总被引:2,自引:1,他引:1  
WavemotionsarounddifferentsubmergedstructuresGaoXueping,InouchiKunimitsu,KakinumaTadao(ReceivedAugust11,1997;acceptedOctober2...  相似文献   

16.
The "surface roller" to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation including diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well. This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natu ral topography.  相似文献   

17.
Nonlinear Effect of Wave Propagation in Shallow Water   总被引:5,自引:2,他引:5  
—In this paper,a nonlinear model is presented to describe wave transformation in shallow wat-er with the zero-vorticity equation of wave-number vector and energy conservation equation.Thenonlinear effect due to an empirical dispersion relation(by Hedges)is compared with that of Dalrymple'sdispersion relation.The model is tested against the laboratory measurements for the case of a submergedelliptical shoal on a slope beach,where both refraction and diffraction are significant.The computation re-sults,compared with those obtained through linear dispersion relation.show that the nonlinear effect ofwave transformation in shallow water is important.And the empirical dispersion relation is suitable for re-searching the nonlinearity of wave in shallow water.  相似文献   

18.
Evolution of waves and currents over a submerged laboratory shoal   总被引:1,自引:0,他引:1  
The vertically-integrated effect of interaction between waves and wave-induced currents on wave transformation over a submerged elliptic shoal was investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269–284.]. The numerical simulations were performed using two numerical wave-current model systems: one, a combination of the wave model SWAN and the current model SHORECIRC, and the other, a combination of the wave model REF/DIF and the same current model. A time-dependent, phase-resolving wave and current model, FUNWAVE, was also utilized to simulate the experiment. In the simulations, the developed wave-induced currents defocused waves behind the shoal and brought on a wave shadow zone that showed relatively low wave height distributions. For the breaking case of monochromatic waves, the wave heights computed using FUNWAVE showed good agreement with the measurements and the resulting wave-induced currents showed a jet-like velocity distribution in transverse direction. And the computed results of the two model combinations agreed better with the measurements than the computed results obtained by neglecting wave-current interaction. However, it was found that for the case in which transverse interference pattern caused by refracted waves was strong, REF/DIF-SHORECIRC did not correctly evaluate radiation stresses, the gradients of which generate wave-induced currents. SWAN-SHORECIRC, which cannot deal with the interference patterns, predicted a jet-like wave-induced current. For breaking random wave cases, the computed results of the two model combinations and FUNWAVE agreed well with the measurements. The agreements indicate that it is necessary to take into account the effect of wave-induced current on wave refraction when wave breaking occurs over a submerged shoal.  相似文献   

19.
登州浅滩的形成、动态演化及其可恢复性研究   总被引:2,自引:1,他引:1  
登州浅滩是位于渤海海峡南部登州水道西侧海域的长条状水下沙洲,经海底地貌形态对比、沉积物取样及海区动力条件分析,初步推断为全新世以来形成的潮流沉积体的一部分,后经波浪和沿岸流等动力的长期改造逐渐稳定成为边缘坝地貌形态.20世纪80年代中期开始在登州浅滩进行的大规模人工挖沙严重破坏了沙体的动态平衡.利用水库模型估算,浅滩在短期内难以恢复到原来的规模.  相似文献   

20.
多方向不规则波传播变形数值模拟   总被引:2,自引:1,他引:1  
在推广的缓坡方程数学模型基础上建立了多方向不规则波数学模型,综合考虑了波浪折射、绕射、反射、底摩擦和风能输入等因素。基于线性波浪理论,将波浪方向谱在频率和方向上按等能量分割法离散后,分别计算各组成波的传播变形,再计算合成波要素。缓坡方程数学模型采用改进的ADI法求解,计算效率高,稳定性好。采用椭圆形浅滩不规则波模型试验结果和单突堤不规则波绕射理论解对数学模型进行了验证,数值模拟结果和试验值及理论解符合良好。利用该模型进行了某港港内波浪折射、绕射和反射的联合数值模拟,给出了合理的港内波高分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号