共查询到16条相似文献,搜索用时 62 毫秒
1.
利用大地水准面起伏模拟琉球海沟南、中、北段岩石圈的挠曲,经非线性最小二乘拟合,得到琉球海沟洋坡各段岩石圈的有效弹性厚度(T4)。模拟结果表明,琉球海沟洋坡的T4中段小,南北段大;南北段相比,南段小,北段大;与其他海沟相比琉球海沟洋坡的T4非常小。不同的Te值表明俯冲板片与岛孤之间不同的耦合程度,为进一步研究西太平洋边缘沟一弧一盆体系的动力学问题提供了新的视角。 相似文献
2.
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench. Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles. Results of the analyses revealed significant along-trench variations in plate flexural bending: the trench relief(W_0) of 1.9 to 5.1 km;trench-axis vertical loading(V_0) of –0.5×(10)~(12) to 2.2×(10)~(12) N/m; axial bending moment(M_0) of 0.1×(10)~(17) to 2.2×(10)~(17) N;effective elastic plate thickness seaward of the outer-rise region(T_e~M) of 20 to 65 km, trench-ward of the outer-rise(T_e~m) of 11 to 33 km, and the transition distance(X_r) of 20 to 95 km. The Horizon Deep, the second greatest trench depth in the world, has the greatest trench relief(W_0 of 5.1 km) and trench-axis loading(V_0 of 2.2×(10)~(12) N/m); these values are only slightly smaller than that of the Challenger Deep(W_0 of 5.7 km and V_0 of 2.9×(10)~(12) N/m) and similar to that of the Sirena Deep(W_0 of 5.2 km and V_0 of 2.0×(10)~(12) N/m) of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates. Analyses using three independent methods, i.e., the T_e~M/T_e~m inversion, the flexural curvature/yield strength envelope analysis, and the elasto-plastic bending model with normal faults, all yielded similar average Te reduction of 28%–36% and average Te reduction area S¢Te of 1 195–1 402 km~2 near the trench axis. The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes. Comparisons of the Manila, Philippine, Tonga-Kermadec, Japan, and Mariana Trenches revealed that the average values of T_e~M and T_e~m both in general increase with the subducting plate age. 相似文献
3.
4.
对我国载人潜器"蛟龙号"首次在马里亚纳海沟南部获取的沉积物柱状样(JL7KGC01A)进行了涂片观察、粒度、黏土矿物和稀土元素组成分析。结果表明:沉积物为典型深海黏土沉积。根据沉积物的粒度、黏土组分和稀土元素含量变化以及不同程度的δCe和δEu异常将该沉积物柱状剖面分为明显的上下两个沉积层段,即:1.8~2.41 m段与0.03~1.8 m两个层段。下部层段(1.8~2.41 m)相比上部层段(0.03~1.8 m),沉积物平均粒径较粗,蒙脱石/伊利石比值较高,稀土元素含量低且具有弱的Ce负异常和Eu正异常,表明该段沉积物受到较多的火山物质的影响。结合年代学分析认为研究区沉积物在2.2 Ma发生明显转变,2.2 Ma之前沉积物物源以附近火山物质为主,2.2 Ma之后物源仍以火山物质为主,但陆源物质供应逐渐增加。物源的转变暗示着本区在2.2 Ma之前火山活动较为频繁。 相似文献
5.
深渊观测是开展深渊科学研究的前提。文章介绍了2020年7月"东方红3"船在马里亚纳海沟"挑战者深渊"附近完成的一次海洋调查。基于船载温盐深综合剖面测量系统获取的万米级剖面数据,分析全海深的温盐性质,并依据Thorpe尺度方法和细尺度参数化方法,进一步估算不同深度层的湍动能耗散率。结果表明:"挑战者深渊"的深层海水十分稳定, 3 000—5 000 dbar的温盐特征与下层绕极水相同;受弱层结背景下的内潮影响, 5 000—8 000 m的耗散率显著提升。本次调查获取的万米级水文剖面为马里亚纳海沟的深渊探索提供了数据方面的支撑。 相似文献
6.
7.
2015年12月在马里亚纳海沟"挑战者深渊"进行了定点样品采集,对温度、盐度、溶解氧、pH等环境参数进行了分析,讨论了营养盐的垂直分布特征、各形态营养盐结构特征及影响因素。研究发现,溶解氧在表层具有最大值,在1000 m左右出现极小值,而在8700 m深度具有较高溶解氧值(5.79 mg·L^-1),这可能与富氧水团的存在有关。硝酸盐表层含量较低,在1000和5367 m处出现双峰值。在表层水体中,溶解有机氮、磷是溶解总氮、溶解总磷的主要存在形式,表层以深,溶解无机氮、磷逐渐占据主导地位。磷酸盐表层含量最低,在1000 m处达到最大值,之后随着深度的增加浓度逐渐降低;硅酸盐在表层含量较低,在约4000 m处有最大值161.65μmol·L^-1,在4000 m以深,硅酸盐仍维持较高浓度。结果表明马里亚纳海沟"挑战者深渊"的溶解氧、pH及营养盐的垂直分布特征与大洋环流、海沟形态以及生物活动密切相关。 相似文献
8.
针对取样于141°48.700 8'E,11°11.698 8'N,深度为8 638 m的马里亚纳海沟海底表层沉积物,考虑该沉积物中的孔隙水为海水,提出一种测定其基本物理性质指标的修正方法,并测定其相关的物理性质指标,最后通过扫描电子显微镜观察其微观结构。研究结果表明:本次取样处的深海海底表层沉积物具有极高的含水率、高孔隙率、低密度、低比重、高饱和度等特性。考虑海水中盐分影响的修正后,该土样的含水率比修正前提高了11.68%,比重比修正前降低了7.66%。该沉积物显微结构以絮凝结构为主,中间夹杂着大量多孔隙的硅藻碎片和生物体的空壳,这使得该沉积物中的孔隙数量增多。研究结果将有助于了解马里亚纳海沟地区的深海沉积环境和历史,为深海集矿车的设计提供参考。 相似文献
9.
马里亚纳海沟“挑战者深渊”最深点水深探测 总被引:1,自引:0,他引:1
20112012年,海洋六号船采用EM122多波束测深系统在马里亚纳海沟最深海域"挑战者深渊"进行的多波束水深测量,通过对测深资料进行分析处理,获得了高精度海底地形图,揭示了马里亚纳海沟挑战者深渊附近海底地形呈近东西向延伸,有西部、中部和东部三个洼地,它们由10800m等深线圈闭,长轴方向与海沟方向一致。洼地底部水深大于10900m,地形较为平坦。三个洼地最深区域分别由10916m、10904m和10915m等深线圈闭。三个洼地最大水深为10917m(误差小于20m),位于西部洼地内,中心位置为142°12.14'E,11°19.92'N。该处也是马里亚纳海沟最深点。 相似文献
10.
马里亚纳海沟水深探测及“挑战者深渊”海底地形特征 总被引:4,自引:0,他引:4
"海洋六号"综合调查船先后于2011、2012年,利用EM122多波束测深系统在马里亚纳海沟最深海域"挑战者深渊"进行了全覆盖水深测量,获得了区域内详细的海底地形资料,揭示了马里亚纳海沟在区内呈近东西向延伸以及海沟两侧斜坡地形迥异、不对称的特点,南北两侧不同的地形地貌特征反映了马里亚纳海沟形成过程中两侧不同的次生构造活动影响。"挑战者深渊"区内有西部、中部和东部3个洼地,其中,西部洼地较深,其中心位置(142°12.14'E,11° 19.92'N)水深10 917 m,是马里亚纳海沟的最深点。 相似文献
11.
Microbial diversity in the abyssal sediments beneath the seafloor of 30,94,and 151cm near the southern end of the Mariana Trench was analyzed in the Illumina HiSeq 2500 platform.Results show that the microbial populations were dominated by bacteria but merely no archaea were identifi ed at the three depths.In the bacterial community,Proteobacteria and Firmicutes dominated the total taxon tags,followed by Bacteroidetes,Actinobacteria,Planctomycetes,Cyanobacteria,and Chloroflexi,which together account for over 99%of the total population.Similar to that in the seawater in the trench,the operational taxonomic units(OTUs)belonging to Gammaproteobacteria from the sediment samples showed high abundance.However,common bacterial OTUs in the water of the trench including Nitrospirae and Marinimicrobia were hardly found in the sediments from the southern Mariana Trench or the hadal region.Therefore,this study documented for the first time the compositions of microbial diversity in the trench sediments,revealed the difference in microbial diversity in water and sediment of the trench and will enrich the knowledge on the microbial diversity in the abyssal areas. 相似文献
12.
对大洋27航次在西太平洋马里亚纳海沟挑战者深渊获取的3个多金属氧化物样品进行了X射线矿物衍射分析、穆斯堡尔谱分析及地球化学元素分析,研究其矿物、地球化学特征差异。结果表明,所取样品处于多金属氧化物发育的初始阶段,具有独特的矿物地球化学特征:(1)相较于太平洋CC区及中太平洋海盆获取的多金属结核样品,本研究样品的矿物组成中含有异常高的石英、斜长石以及黏土矿物,而水羟锰矿和钙锰矿含量较低。(2)样品中铁相矿物主要为正方针铁矿(91.6%),另含少量纤铁矿(8.4%),推测是纤铁矿向更加稳定的正方针铁矿衍变的结果。(3)由于样品中深海黏土组分以及氧化物核心物质的混入,加上吸附金属氧化物时间较短,导致SiO2和Al2O3含量均高于正常结核,而Fe、Mn、Cu、Co、Ni等其余金属元素含量较低。(4)由于形成时间较短,样品中稀土元素含量相对较低,ΣREE仅约为0.4×10-3(一般太平洋CC区及中太平洋结核中稀土含量均大于1.0×10-3);加之海水氧化还原作用的降低以及研究区海底热液活动的影响,Ce元素未表现出多金属结核中常见的正异常。 相似文献
13.
GAO Xiang DING Kang REN Yu-gang FU Wen-tao DING Zhong-jun ZHAO Sheng-y LIU Bao-hua 《海洋工程》2017,31(5):618-623
China''s 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions. 相似文献
14.
Tectonic effects of a subducting aseismic ridge: The subduction of the Nazca Ridge at the Peru Trench 总被引:1,自引:0,他引:1
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting. 相似文献
15.
Deep and Bottom Currents in the Challenger Deep,Mariana Trench,Measured with Super-Deep Current Meters 总被引:3,自引:0,他引:3
The bottom currents in the Challenger Deep, the deepest in the world, were measured with super-deep current meters moored at 11°22′ N and 142°35′ E, where the depth is 10915 m. Three current meters were set at 9687 m, 10489 m and 10890 m at the station in the center of the Challenger Deep for 442 days from 1 August 1995 to 16 October 1996. Although rotor revolutions in 60 minutes of recording interval were zero for 37.5% of the time, the maximum current at the deepest layer of 10890 m was 8.1 cm s−1, being composed of tidal currents, inertia motion and long period variations. Two current meters were set at 6608 m and 7009 m at a station 24.9 km north of the center for 443 days from 31 July 1995 to 16 October 1996, and two current meters at 6214 m and 6615 m at a station 40.9 km south of the center for 441 days from 2 August 1995 to 16 October 1996. The mean flow at 7009 m depth at the northern station was 0.7 cm s−1 to 240°T, and that at 6615 m depth at the southern station was 0.5 cm s−1 to 267°T. A westward mean flow prevailed at the stations, and no cyclonic circulation with mean flows of the opposite directions was observed in the Mariana Trench at a longitude of 142°35′ E. Power spectra of daily mean currents showed three spectral peaks at periods of 100 days, 28–32 days and 14–15 days. The peak at 100 day period was common to the power spectra. 相似文献
16.
Deep CTD Casts in the Challenger Deep,Mariana Trench 总被引:1,自引:0,他引:1
On 1 December 1992, CTD (conductivity-temperature-depth profiler) casts were made at three stations in a north-south section of the Challenger Deep to examine temperature and salinity profiles. The station in the Challenger Deep was located at 11°22.78′ N and 142°34.95′ E, and the CTD cast was made down to 11197 db or 10877 m, 7 m above the bottom by reeling out titanium cable of 10980 m length. The southern station was located at 11° 14.19′ N and 142°34.79′ E, 16.1 km from the central station, where water depth is 9012 m. CTD was lowered to 7014 db or 6872 m. The northern station was located at 11°31.47′ N and 142° 35.30′ E, 15.9 km from the central station, and CTD was lowered to 8536 db or 8336 m, 10 m above the bottom. Below the thermocline, potential temperature decreased monotonously down to 7300–7500 db beyond a sill depth between 5500 m and 6000 m, or between 5597 db and 6112 db, of the trench. Potential temperature increased from 7500 db to the bottom at a constant rate of 0.9 m°C/1000 db. Salinity increased down to 6020–6320 db, and then stayed almost constant down to around 9000 db. From 9500 db to the bottom, salinity increased up to 34.703 psu at 11197 db. Potential density referred to 8000 db increased monotonously down to about 6200 db, and it was almost constant from 6500 db to 9500 db. Potential density increased from 9500 db in accordance with the salinity increase. Geostrophic flows were calculated from the CTD data at three stations. Below an adopted reference level of 3000 db, the flow was westward in the north of Challenger Deep and eastward in the south, which suggests a cyclonic circulation over the Challenger Deep. Sound speed in Challenger Deep was estimated from the CTD data, and a relation among readout depth of the sonic depth recorder, true depth, and pressure was examined. 相似文献