首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
波浪爬高是海岸工程中重要的水动力学问题之一,其数值模拟方法通常是通过离散Navier-Stokes方程或Boussinesq方程实现的,其中基于光滑粒子流体动力学方法是近年发展起来的。本文应用该方法模拟相同水深下,不同波高的孤立波在45(°)陡坡上的爬高,模拟结果与理论计算结果及已有物理模型试验结果进行了对比,并模拟出孤立波激散破碎过程及粒子分布和速度场的变化过程。结果表明,对密度近似方程进行重新初始化保持了流场内的质量守恒,同时整个计算域内的压力分布更加规则,说明光滑粒子流体动力学法在波浪爬高计算中的有效性。  相似文献   

2.
LI  Yucheng 《中国海洋工程》2002,16(1):79-87
Regular wave deformation and breaking on very gende slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0-1 boundary element method. The wave elevation and the potentials of time-stepping integration are detertnined by the 2nd-order Taylor expansion at the nodes of free surface boundary elements. During calculation the x-coordinates of the free surface element nodes are supposed to remain unchanged, i.e. the partial derivatives of wave elevation and potentials with respect to x are considered as zero. The numerical results of asymmetric parameters of breaking waves are verified by experimental study. It is shown that when the wave asymmetry is weak, the maximum horizontal velocity of water particales occurs at the wave peak and, the average ratio of this maximum velocity to wave celerity is 0.96. However, when the wave asymmetry is strong, the maximum horizontal velocity of water particles occu  相似文献   

3.
在近岸波浪相关研究中,辐射应力是波动在水体中引起的剩余动量流,是波浪运动的重要物理量.在波浪从深水逐渐传向浅水的过程中,波浪的非线性逐渐增强,甚至会发生破碎等剧烈变形,引起辐射应力的强烈变化,对次重力波生成等有重要贡献.应用OpenFOAM精细模拟波浪在潜堤上的传播,得出波浪运动的详细流场信息,计算了有波浪破碎情况下潜...  相似文献   

4.
ZHAO  Ming 《中国海洋工程》2002,16(4):513-523
A numerical model is developed for estimation of local scour around a large circular cylinder under vvave action. The model includes wave diffraction around structures, bed shear stress calculation inside the vvave boundary layer and topo-graphical change model. The vvave model is based on the improved Boussinesq equations for varying depth. The vvave boundary layer is calculaled by solving the integrated momentum equation over the boundary layer. The bed shear stress due to streaming, an important factor affecting the sediment transport around a large-scale cylinder, is calculated. The Lagrangian drift velocity is included in calculation of the suspended sediment transport rates. The model is implemented by a finite element method and the results from the present model, which agree well with experimental data, are com-pared vvith those from other methods.  相似文献   

5.
Wave forces acting on a vertical cylinder at different locations on a slope beach in the near-shore region are investigated considering solitary waves as incoming waves. Based on the Reynolds-averaged Navier-Stokes equations and the k-ε turbulence model, wave forces due to the interaction between the solitary wave and cylinder are simulated and analyzed with different incident wave heights and cylinder locations. The numerical results are first compared with previous theoretical and experimental results to validate the model accuracy. Then, the wave forces and characteristics around the cylinder are studied, including the velocity field, wave surface elevation and pressure. The effects of relative wave height, Keulegan-Carpenter(KC) number and cylinder locations on the wave forces are also discussed. The results show that the wave forces exerted on a cylinder exponentially increase with the increasing incident wave height and KC number. Before the wave force peaks, the growth rate of the wave force shows an increasing trend as the cylinder moves onshore. The cylinder location has a notable effect on the wave force on the cylinder in the near-shore region. As the cylinder moves onshore, the wave force on the cylinder initially increases and then decreases. For the cases considered here, the maximum wave force appears when the cylinder is located one cylinder diameter below the still-water shoreline. Furthermore, the fluid velocity peaks when the maximum wave force appears at the same location.  相似文献   

6.
A numerical study on the acoustic radiation of a propeller interacting with non-uniform inflow has been conducted. Real geometry of a marine propeller DTMB 4118 is used in the calculation, and sliding mesh technique is adopted to deal with the rotational motion of the propeller. The performance of the DES (Detached Eddy Simulation) approach at capturing the unsteady forces and moments on the propeller is compared with experiment. Far-field sound radiation is predicted by the formation 1A developed by Farassat, an integral solution of FW-H (Ffowcs Williams-Hawkings) equation in time domain. The sound pressure and directivity patterns of the propeller operating in two specific velocity distributions are discussed.  相似文献   

7.
China Ocean Engineering - The breakwaters have experienced many changes during their construction history. These changes have been considered to improve their performance, depending on their...  相似文献   

8.
Excessive displacement responses of monopiles affect the serviceability of offshore structures. Related to complicated pile-seabed-wave interactions, the actual behavior of monopiles in silty seabed under periodic wave action remains unclear, and relevant studies in the literature are limited. A series of experiments were conducted in a wave flume containing single piles in silty seabed with relative density of 0.77 subjected to regular waves. Two stages of wave loading were applied successively...  相似文献   

9.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

10.
Wang  Hua-kun  Yan  Yu-hao  Chen  Can-ming  Ji  Chun-ning  Zhai  Qiu 《中国海洋工程》2019,33(6):723-733
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).  相似文献   

11.
12.
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves. Input wave groups are generated by the technique of frequency-focusing, and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure. The proposed model is validated by comparison with the published laboratory data. In respect of both the wave elevations and the underlying water particle kinematics, the numerical results are in excellent agreement with the experimental data. Furthermore, the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified. Then the generalized FNV theory and Rainey's model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra) are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio) of the structure.  相似文献   

13.
为了研究类似张力腿平台(TLP)等海洋工程结构物的运动,浮式直立柱群的波浪荷载计算是十分重要的。应用匹配渐进和特征函数展开法得到单柱流场速度势的半解析解,再引入大间距假设,将柱群中某一柱体对其它柱体的扰动作用用平面入射波来代替。同时对该问题进行了非平面波修正,计入柱间水动力相互作用,解决了柱群的绕射问题。应用该方法计算了不同条件下的双柱波浪荷载的幅频特征。  相似文献   

14.
15.
The analysis of the data of model tests of two large deep wharves and monographic experimental studies show that two aspects are to be improved so as to predict the wave uplift forces on the bottom of a circular cylinder. The first aspect is the uplift pressure distribution on the bottom, and the second is the correct determination of the phase for maximum horizontal wave forces. The second problem has been solved. Synthesizing the results of theoretical analysis and experiments, we suggest a diagram for the determination of the phase when the maximum horizontal wave force appears. On the basis-ef the diagram the simultaneous wave uplift forces can be obtained for the structural stability analysis.  相似文献   

16.
Based on the 1st order cnoidal wave theory, the nonlinear wave diffraction around a circular cylinder in shallow water is studied in this paper. The equation of the wave surface around the cylinder is formulated and by using this formula the wave surface elevation on the cylinder surface can be obtained. In this paper, the formula for calculating the cnoidal wave force on a circular cylinder is also derived. For the wave conditions which are often encountered in practical engineering designs, the ratios of the nonlinear wave forces to the linear wave forces are calculated, and the results are plotted in this paper for design purposes. In order to verify the theoretical results, model tests are conducted. After comparing the test results with the theoretical ones, it is concluded that, in shallow water, for the case of T g / d~(1/2) > 8-10 and H / d > 0.3, the cnoidal wave theory should be used to calculate the wave action on a cylindrical pier.  相似文献   

17.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

18.
Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.  相似文献   

19.
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes(RANS) equations with the SST k ?? turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid(VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.  相似文献   

20.
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0?1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号