首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mechanical design of a fast wide-field telescope with an entrance pupil that is 180 mm diameter, a focal length of 294 mm, and an angular field of view of 10° is described. Original construction solutions have been found for this type of system.  相似文献   

2.
A new exact method for line radiative transfer   总被引:1,自引:0,他引:1  
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations , and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the 'effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins.
The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the C  ii 158-μm line but not by the 3P lines of O  i .  相似文献   

3.
This paper deals with some recent problems of frequency determination in dynamical systems. As a main result a new Fast Fourier Transform (FIT) method, the High Resolution Fast Fourier Transform (HRFFT) is presented, which allows for economic evaluation of discrete Fourier spectra at arbitrary frequencies, not just at the evenly spaced points of the rigid frequency grid the ordinary FFT is restricted to (continuous evaluation). Comparison is made to existing methods in what regards continuous evaluation, computational speed, memory requirements and precision, evidencing the high efficiency of the HRFFT. Possible applications of the new technique are indicated, showing that existing methods, as e.g. that of Laskar (1990, Icarus 88) and its extension by idlichovský and Nesvorný (1996, this volume), may strongly benefit from the HRFFT.  相似文献   

4.
5.
The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used...  相似文献   

6.
We introduce a new code for computing time-dependent continuum radiative transfer and non-equilibrium ionization states in static density fields with periodic boundaries. Our code solves the moments of the radiative transfer equation, closed by an Eddington tensor computed using a long characteristics (LC) method. We show that traditional short characteristics and the optically thin approximation are inappropriate for computing Eddington factors for the problem of cosmological re-ionization. We evolve the non-equilibrium ionization field via an efficient and accurate (errors <1 per cent) technique that switches between fully implicit or explicit finite differencing depending on whether the local time-scales are long or short compared to the time-step. We tailor our code for the problem of cosmological re-ionization. In tests, the code conserves photons, accurately treats cosmological effects and reproduces analytic Strömgren sphere solutions. Its chief weakness is that the computation time for the LC calculation scales relatively poorly compared to other techniques  ( t LC∝ N ∼1.5cells)  ; however, we mitigate this by only recomputing the Eddington tensor when the radiation field changes substantially. Our technique makes almost no physical approximations, so it provides a way to benchmark faster but more approximate techniques. It can readily be extended to evolve multiple frequencies, though we do not do so here. Finally, we note that our method is generally applicable to any problem involving the transfer of continuum radiation through a periodic volume.  相似文献   

7.
In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth \(L_{1}\) and \(L_{2}\)-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold’s approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth’s parking orbit of the spacecraft and the manifold.  相似文献   

8.
Homotopy methods have been widely utilized to solve low-thrust orbital transfer problems, however, it is not guaranteed that the optimal solution can be obtained by the existing homotopy methods. In this paper, a new homotopy method is presented, by which the optimal solution can be found with probability one. Generalized sufficient conditions, which are derived from the parametrized Sard’s theorem, are first developed. A new type of probability-one homotopy formulation, which is custom-designed for solving minimum-time low-thrust trajectory optimization problems and satisfies all these sufficient conditions, is then constructed. By tracking the continuous zero curve initiated by an initial problem with known solution, the optimal solution of the original problem is guaranteed to be solved with probability one. Numerical demonstrations in a three-dimensional time-optimal low-thrust orbital transfer problem with 43 revolutions is presented to illustrate the applications of the method.  相似文献   

9.
In this paper we develop a new exact method combined with finite Laplace transform and theory of linear singular operators to obtain a solution of transport equation in finite plane-parallel steady-state scattering atmosphere both for angular distribution of radiation from the bounding faces of the atmosphere and for intensity of radiation at any depth of the atmosphere. The emergent intensity of radiation from the bounding faces are determined from simultaneous linear integral equations of the emergent intensity of radiation in terms ofX andY equations of Chandrasekhar. The intensity of radiation at any optical depth for a positive and negative direction parameter is derived by inversion of the Laplace transform in terms of intergrals of the emergent intensity of radiation. A new expression of theX andY equation is also derived for easy numerical computation. This is a new and exact method applicable to all problems in finite plane parallel steady scattering atmosphere.  相似文献   

10.
11.
Wan  F. S.  Wilson  S. J.  Sen  K. K. 《Astrophysics and Space Science》1986,127(1):139-141
The modified double-interval spherical-harmonic method is used to compute the radiative flux in a linearly anisotropically scattering plane-parallel medium with specularly and diffusely reflecting boundaries.  相似文献   

12.
A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \(\vert \mu \vert \geq0.1 \) is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.  相似文献   

13.
We present a new code (companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N2) while full hierarchy searches can be as expensive as O(N3), making analysis highly inefficient for multiple data sets with N?103. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.  相似文献   

14.
15.
A generalized functional which yields the Milne integral equation on variation and whose extremum value is proportional to the reflectivity at arbitrary emergent angle is proposed. A similar functional exists for computing the transmissivity at arbitrary emergent angle. This work is a generalization of the variational method of Stokes and DeMarcus (1971, Icarus14, 307) based on the principle of reciprocity. In the special case of trial functions that are linear in the undetermined parameters, the calculation is greatly simplified. The computational value of our variational principle is demonstrated.  相似文献   

16.
In this article, we introduce a novel three-step approach for solving optimal control problems in space mission design. We demonstrate its potential by the example task of sending a group of spacecraft to a specific Earth L 2 halo orbit. In each of the three steps we make use of recently developed optimization methods and the result of one step serves as input data for the subsequent one. Firstly, we perform a global and multi-objective optimization on a restricted class of control functions. The solutions of this problem are (Pareto-)optimal with respect to ΔV and flight time. Based on the solution set, a compromise trajectory can be chosen suited to the mission goals. In the second step, this selected trajectory serves as initial guess for a direct local optimization. We construct a trajectory using a more flexible control law and, hence, the obtained solutions are improved with respect to control effort. Finally, we consider the improved result as a reference trajectory for a formation flight task and compute trajectories for several spacecraft such that these arrive at the halo orbit in a prescribed relative configuration. The strong points of our three-step approach are that the challenging design of good initial guesses is handled numerically by the global optimization tool and afterwards, the last two steps only have to be performed for one reference trajectory.  相似文献   

17.
18.
The scientific goals and construction details of a new design, Polish X-ray spectrophotometer are given. It will be incorporated within the Russian TESIS X and EUV complex aboard the forthcoming CORO-NAS solar mission. SphinX (Solar Photometer in X-rays) will use PIN silicon detectors for high time resolution (0.01 s) measurements of the solar spectra of quiet and active corona in the range 0.5–15 keV. A new filter-fluorescence target concept will be employed to allow for a fast photometry of the solar X-ray flux variations in selected, well defined narrow spectral bands including the Fe XXVI and Fe XXV iron line groups.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号