首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The problem of using surface geochemical exploration techniques in areas of very thick and electrically conductive weathering residuum is common to much of Australia. At the Elura deposit (New South Wales) a distinct electrogeochemical H+ anomaly can be detected in the top few cm of residual soil above about 100 m of conductive residual overburden. In the present paper the results of an investigation of the much more difficult problem of detecting sulfide mineralization beneath thick conductive transported overburden are described.The objective of the study was to demonstrate that sulfide mineralization beneath thick transported overburden can be detected by geochemical patterns in surface soils in the context of an electrogeochemical model of dispersion.The Thalanga massive sulfide deposit in northeast Queensland has at least 4 million tonnes of 15% combined Zn, Pb and Cu. The mineralized horizon lies at the contact between rhyolitic and dacitic rocks of the Cambro-Ordovician Mt. Windsor Volcanics. The deposit is covered by transported cemented Tertiary terrigenous clayey sandstones and grits; these are electrically conductive and vary in thickness from 0 to 70 m.Near-surface soil samples were collected along five traverses normal to the strike of mineralization. The traverses were located to give 0 m, 1 m, 30 m, 50 m, and 70 m overburden thicknesses; there is no known significant mineralization along the last traverse which is assumed to be background, and there is a small gossan where the overburden is absent.Dispersion patterns influenced by electrogeochemical processes should result in relatively low values for ions over massive sulfides with lateral peaks; this has been termed a “rabbit-ear” anomaly. “Rabbit-ear” anomalies in surface soils for H+, Cu, and Zn occur over the sulfide zone. The H+ pattern is better defined where there is a significant depth of overburden (where the anomaly is about 500 m wide). The Cu anomaly is 300–600 m wide, and the Zn anomaly is 450–675 m wide.Even where the overburden is 50 m thick, anomalous “rabbit-ear” anomalies for H+ and Zn are clearly identifiable, but the anomaly for Cu is a single peak of 20 ppm over the hanging wall. It is suggested that the results of this work convincingly demonstrate that at Thalanga surface soil samples may reliably be used to detect massive sulfide deposits - even where they are effectively blind beneath a considerable thickness of transported and conductive overburden. The processes of dispersion are speculated to be diffusion, and it is argued that the pattern-controlling mechanism is electrochemical.  相似文献   

2.
赵善仁  吴悦斌 《现代地质》1996,10(4):478-484
五台山—恒山绿岩带Au、Ag、Cu矿床可分为二大类型:(1)再生型金银铜矿,产在包括岩浆岩在内的各类岩石断裂构造中,与岩浆期后热液有关;(2)变生型金银铜矿,产于各类变质岩中,具有层控特征(即绿岩型金矿)。在地球化学特征上,再生型矿床与变生型矿床相比,矿体及围岩中Mo、Ag、Pb、Zn、Cd等成矿及伴生元素明显富集;K2O、Rb、Sr、Ba、Th、U也明显富集,是后期岩浆热液作用的结果;Hg、F的明显富集则与后期构造活动有关;Zn/Cd比值较低,说明受到后期岩浆侵入影响;Th/U比值低,可能指示富钙的酸性岩环境。再生型Au矿化的元素组合为Cd、As、Ni、Ag、Sb、Au、Hg(Bi),再生型Ag矿化的元素组合为As、Sb、Ag、Cd、Cu、Ni(Mo、Pb、Zn、Bi),变生型Au矿化的元素组合较简单,只为Au、Hg、As或Au、Cu。上述地球化学特征不仅可以有效地区分矿化类型,而且可以作为地球化学找矿和评价的指标  相似文献   

3.
The mineralogy and geochemistry of the massive pyrite-pyrrhotite mineralization, which contains minor magnetite, sphalerite and galena, the weathered profile and surface gossan at Mugga Mugga in Western Australia have been examined. Reactions between amphibolite wall rocks and acid waters from the oxidation of the iron sulfides have resulted in distinct mineralogical zonation of the weathered profile which is further modified near the surface by lateritization. At the base of the weathered zone an opaline chert (Opal-CT) has been precipitated from fluctuations of the water table. A gossanous zone from 25.14–68.80 m with boxworks after massive pyrite is modified by abundant kaolinite, dickite and an alunite-type mineral derived from amphibolite wall rocks, while above 25.14 m both plinthite and mottled clay zones of a laterite profile are evident. Some characteristics of a mature gossan profile – sulfate-phosphate-arsenate near the base, a carbonate zone higher in the profile, and an oxide zone near the surface – overprint the gross zonation.At the interface between sulfide and weathered rock Mg, Ca, K, S, Zn, Cd, Hg, Ba are depleted, As, Sb, Mo, Cr and V contents increase and in the weathered zone, SiO2, TiO2, P2O5, SO3, Pb, Zn, Hg, Sb, Co, Ni, W, Ba, Sr and Zr decrease up the profile whilst Al2O3, Fe2O3, CO2, Cu and As increase. Of the elements associated with the massive pyrite (Pb, Zn, Cu, Ag, As, Cd, Hg, Sb, Co, Ni) anomalous concentrations of Pb, Cu, Ag, As and Sb occur in the surface gossan despite the possibility of complete leaching by highly acidic solutions. These anomalies are similar to those found in gossans over pyrite mineralization elsewhere in the Yilgarn Block.  相似文献   

4.
块状硫化物矿床的地球化学找矿标志   总被引:6,自引:0,他引:6  
近年来国外发现了许多大型块状硫化物矿床,而我国进展还不大。原因之一是我们对这类矿床的地质特征,成矿条件尤其是找矿标志研究还不够。这是一类成矿物质通过热液作用在海底沉积而成的特殊矿床,故在找矿勘探讨既要研究沉积矿时形成的原生晕,又要研究热液经过围岩时蚀变而产生的次生晕?Mn晕,Tl,Hg,Ba,As和Zn等元素的异常,络合剂元素的富集,微量元素的分布,铅同位素,岩石化学异指数尤其是块状硫化物Cu矿中  相似文献   

5.
In the Bathurst District of New Brunswick there are more than 50 known occurrences of base metal sulphide mineralization within an area of Palaeozoic volcanic-sedimentary rocks approximately bounded by the Rocky Turn deposit in the north, the Key Anacon deposit in the east, the Heath Steele deposit in the south, and the Devil's Elbow deposit in the west. Only four of these occurrences are, or have been, producing mines; 19 are classed as “major occurrences”. The area is highly prospective for massive sulphide deposits of the Brunswick Mining and Smelting and Heath Steele type; it would obviously be of considerable importance to define the zones within the sequence where major occurrences should be sought.To determine whether exploration rock geochemistry could be used on a regional reconnaissance scale, 419 samples of rhyolite from an area of 2000 km2 (at an average density of one sample per 5 km2) were analyzed for total content of Cu, Pb, Zn, Ca, Mg, K, Na, Fe, and Mn. The data were processed by calculating the geometric mean of all samples in cells of approximately 10 km2. Contrary to the relations documented on a mine scale (within one kilometre of major deposits), where the clearest halos are given by major elements, it is the ore elements that give the best regional patterns.The producing mines and the most important of the known occurrences all lie in zones where rhyolite contains less than 10 ppm Cu. Element ratios considerably enhance anomalous relations. The Zn:Pb ratio of the sulphides in the main deposits is 2.4–2.8, regardless of grade. It is demonstrated that all present and past producing mines and the most important known major occurrences lie within well-defined zones of Zn:Pb ratios of 2.4–2.8. Similarly, zones where the Pb:Cu ratio is > 3.0 and the Zn:Cu ratio is > 7.0 also define the most important deposits. These ore-element relations derived from a low sample-density survey define priority zones for detailed exploration for significant major massive sulphide deposits.  相似文献   

6.
北山地区植被属戈壁荒漠植被类型,主要植物群落为红沙,红沙中多数元素特别是成矿元素及其伴生元素的含量和变化系数矿区大于背景区,元素含量背景区呈对数正态分布,矿区呈偏对数正态或多峰分布,红沙中的元素组合分类背景区为Au,Cu,Pb,Zn,As,Sb,Mo,V,Mn和Ag,Sn,Sr,Ba及Ti,Cr,Co,Ni,金矿区为Au,Ag,As,Sb,Mo,Mn,Sr和Cu,Pb,Zn,Sn,Ba及Co,Ni,Ti,V,Cr,铜矿区为Cu,Pb,Zn,Mo,Au,Ag,Ba和As,Sb,Sn,Mn及Ti,V,Cr,Co,Ni,Sr,矿区红沙中浓集系数较大的元素多数在矿区岩石中的浓集系统亦较大,金,铜矿床红沙和岩石中的特征元素分别都有Au,Ag,Ag,Sb,Mo,(Mn)和Cu,Pb,(Ba,Ti,Cr)。在金,铜矿床(体上方分别发育有良好的Au和Cu的生物地球化学异常和元素组合及分带,根据红沙的地球化学特征能,判断金或铜矿种类型,并能对掩埋,隐伏金,铜矿床(体)进行定位预测。  相似文献   

7.
Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan   总被引:1,自引:0,他引:1  
A pilot scale geochemical survey of sediments from the Winder Stream (SW Pakistan) and its tributaries was carried out. The Winder Stream mainly receives sediment from the southern extensions of the Mor and Pab Ranges in the District of Lasbela (Balochistan). In these two mountain ranges, rocks from Jurassic to Cretaceous age are exposed. Rocks of the Ferozabad Group comprise of carbonates and siliciclastics of Lower–Middle Jurassic age and occupy the dominant part of the Mor Range. These strata host syngenetic and epigenetic Zn–Pb–Ba mineralizations of Stratiform Sediment-Hosted (SSH) and Mississippi Valley Type (MVT) deposits.Quantitative estimates of mobile and immobile elements were made from active stream sediments of the Winder stream and its tributaries. The samples were analyzed for Ag, Zn, Pb, Cu, Ni, Co, V, Mn, Fe and Ba using atomic absorption spectroscopy. The abundance of these elements is discussed in relation to local geological conditions such as bedrock, climate, weathering, mobility and pH of the dispersing waters. A number of Zn anomalies have been distinguished in the study area. Kharrari (Zn, 360 ppm), Sand (Zn, 340 ppm) and Draber (Zn, 210 ppm) are demarcated as new areas for Zn mineralization. The present study also indicates prospects of Ag, Cu and V in the rocks of the Mor Range.Relationships between various elements have been identified from scattergrams and reflect genetic associations. Whereby the positive correlation between Cu–Zn (0.55, n=18) and Cu–Pb (0.63) is related to possible sulphide mineralization.  相似文献   

8.
The Sullivan Pb-Zn-Ag massive sulphide deposit in southeastern British Columbia occurs within middle Proterozoic argillite, siltstone and quartz wacke of the Purcell Group. Rock samples were collected from the hangingwall and footwall of the eastern section of the mine and from outcrop up to 50 km from the Sullivan deposit. The samples were analyzed for Cu, Pb, Zn, S, Mn, Ba, Fe, K, Ca, Na and specific conductance. A stepwise discriminant analysis applied to the analytical data determined the group of variables that differentiate between hangingwall, footwall and outcrop or “Background” samples. Hangingwall and footwall rock samples were most effectively discriminated from “background” rock samples on the basis of specific conductance with Cu, Pb, S, Na, and Ba selected as less efficient discriminators. The variables that discriminate hangingwall from footwall rock samples are Cu, Zn and S. The selection of the discriminating variables in each case can be explained in terms of the chemical changes that occur as a result of host rock alteration and sulphide deposition during the mineralizing event at the Sullivan deposit.Stepwise discriminant analysis was used to reduce a number of potential pathfinder variables to an optimum group of pathfinder variables. These optimum pathfinders represent the variables that most effectively differentiate the host rocks of the Sullivan deposit from rocks outside of the mineralized zone that apparently do not contain massive sulphide mineralization.  相似文献   

9.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

10.
A small Kuroko-type Cu-Zn deposit exhibiting metal zoning and alteration assemblages comparable with documented proximal volcanogenic deposits, occurs at the top of a felsic fragmental pile, mantling a large sodic rhyolite domal complex. The domal complex occurs within predominantly mafic to intermediate lavas and volcaniclastic rocks with low-potash island-arc tholeiitic affinities, representing the basal section of the early Tertiary (Eocene to middle Miocene) Wainimala Group near the southern coast of Viti Levu, Fiji.Lithogeochemical trends identified in analyses of rock chip samples from traverses across the domal complex reflect alteration zoning. Sodium, Ca and Sr are strongly depleted within the quartz-sericite foot-wall alteration zone (Zone I) 200 m below mineralization. Potassium, Rb and weaker Mn, Zn and Co depletion and Cu, Pb and Mg enrichment define clay-sericite (Zone II) and clay carbonate (Zone III) footwall alteration 600 to 1200 m below mineralization. Hanging-wall albite-chlorite-calcite-zeolite alteration (Zone IV) is accompanied by enhanced Zn, Pb, Co, Mn, Sr and Na values.Significant mine-scale lithogeochemical trends obtained from systematic sampling of a mineralized borehole section include K and Rb enrichment in the zone of strongest quartz-sericite alteration associated with mineralization and broad depletion of Mn, Na, Ca and Sr within altered footwall fragmental rocks. Minor Cu, Pb, Zn and Ag enrichment has accompanied low-grade propylitic alteration of hanging-wall rocks up to 50 m above mineralization. Analysis of weathered bedrock samples from traverses above the mineralized borehole section indicates that primary geochemical trends occur in the weathered zone. Outcropping gossan has strongly anomalous Cu (535 ppm-21.5%), Zn (3300 ppm-6.15%), Pb (420–8200 ppm), As (200–7000 ppm) and Hg (33–670 ppm) values.Application of lithogeochemistry as a follow-up exploration method in a tropical area such as Wainaleka was investigated as a possible replacement for ridge, spur and base-of-slope soil sampling techniques. Ridge-top auger samples and creek outcrop samples were collected at approximately 100 m intervals and a density of 70/km2. Elements (including Cu, Pb, Zn, Mn, Rb, Sr, Na, K, Ca and Mg) were selected for analysis because of specific associations with mineralization and alteration, and low analytical costs. Single- and multi-element dispersions effectively outline mineralization and attendant alteration.  相似文献   

11.
火山热液型铅锌矿床岩石地球化学特征及预测指标   总被引:2,自引:1,他引:1  
火山热液型铅锌矿床赋矿围岩、后期脉岩和蚀变岩石中成矿元素铅锌银含量高,矿体元素组合复杂,原生异常发育,并存在着原生分带现象.矿体前缘元素为I、Hg、As、Sb、B、Ba;近矿指示元素是Pb、Zn、Ag、Au、Cd、Mn、Cu;尾部或矿下指示元素为Cu、Mo、W、Sn.根据矿床指示元素的分布规律和原生晕的分带性,研制了判别矿床剥蚀程度和评价异常的地球化学指标,建立了该类矿床的地球化学找矿预测标志.  相似文献   

12.
A major gold province of the world exists in the Proterozoic Birimian and Tarkwaian supracrustal rocks of West Africa. The bulk of the gold comes from the primary lode occurrences of the Birimian rocks of Ghana (formerly The Gold Coast). Birimian lithofacies is characterised by subaqueous fine-grained sediments with bimodal volcanic material. Metasedimentary rocks include phyllites and metawackes. Metavolcanic rocks are predominantly tholeiitic basalts. Komatiites and banded iron formations (BIF) are absent.Gold is in 5 parallel, evenly spaced, more than 300 km long, northeast-trending volcanic belts separated by basins containing pyroclastic and meta-sedimentary units. The most prominent is the Ashanti volcanic “greenstone” belt, which hosts the Ashanti Goldfields Corporation mines at Obuasi (more than 800,000 kg Au since 1896), the Billiton Bogosu Gold mine at Bogosu, and the State Gold Mining Corporation mines at Prestea, Bibiani and Konongo.Gold, ranging from 2 to 30 ppm, is in quartz veins of laterally extensive major orebodies which deeply penetrate fissures and shear zones at contacts between metasedimentary and metavolcanic rocks. The veins consists mainly of quartz with carbonate minerals, green sericite, carbonaceous partings and metallic sulfides and arsenides of Fe, As, Zn, Au, Cu, Sb, and Pb. Gold occurs in carbonate fillings in fractured quartz veins. Country rocks, which contain rutile, anatase and granular masses of leucoxene, along ore channels, have been hydrothermally altered to carbonates, sericite, silica and sulfide minerals. Fluid inclusion evidences suggest that mineral deposition took place at about 350°C and 140 bar from dilute aqueous solutions. Timing deduced from ore textures, however, show complex multi-stage mineralization events, with higher temperature minerals commonly having formed later than lower temperature ones. Geochemical studies of materials produced by tropical processes, especially soils, are essential in prospecting poorly exposed terranes of west Africa. Trace and major element distributions at mines and mineral occurrences can indicate mineralization otherwise difficult to detect.This paper highlights the features of the Ghanaian gold deposits that may aid the current search for new deposits along the gold belts. Exploration based on geochemistry is highly important, but should be integrated with data from accompanying geological, lithologic, mineralogical, and structural studies.  相似文献   

13.
Sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle–ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite—usually with μm-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base–metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb–Sb–As–sulphosalts also are present. The rocks locally are silicified and altered to sericite–clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian–Qian–Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering.  相似文献   

14.
Deeply buried Mississippi Valley-type deposits that have been or are currently being mined in North America were initially discovered by drilling. Conventional geochemical methods are ineffective for detecting these ‘blind' deposits when they occur deep within sequences of stable-platform carbonates and shales. The ‘enzyme' leach is a selective analytical technique for determining trace elements associated with amorphous Mn oxide coatings in soils. In many areas of the world, the enzyme leach method is useful for detecting low-level geochemical anomalies in soils, which are associated with blind mineral deposits. Enzyme leach analysis of soils, collected at the Elmwood Mine, Tennessee, revealed high-contrast anomalies over ore bodies 370 m below the surface. In areas where the soils are in chemical equilibrium, ‘combination' anomalies occur over Zn ore bodies. These are characterized by asymmetrical halogen halos which occur around a halogen ‘central low'. Commodity metals (Zn and Pb) and trace elements associated with the ore (Cd, Ba, and Mn) form apical anomalies, which occur over the ore bodies and within the halogen halo. Under most circumstances, agricultural practices do not affect enzyme leach results. However, agricultural activity in central Tennessee appears to have altered the proportion of amorphous Mn oxides in the soils in some locations. Where the MnO2-form equilibrium of the soil has been disturbed, enzyme leach data are erratic. In the one instance where this was encountered, ratioing the data to Mn reveals anomalies which bracket the blind ore bodies.  相似文献   

15.
黄铁矿型铜多金属矿床是与海底火山喷发—沉积建造有关的火山岩矿床,矿化赋存于一套微量元素总体含量水平较高的海相中酸性细碧角斑岩系中。赋矿地层、岩性具有以Cu,Pb,Zn为主,伴生Sb,Ba,Ag,As,Bi,Hg,Cd等多元素的特征组合,这些元素在成矿区域上形成大范围的地球化学异常,其主体异常对应于矿田。矿区大比例尺的岩石地球化学测量显示,这些指示元素的清晰的原生异常相互交替叠置于矿床内矿化富集部位,水平分带不甚明显,而垂直分带清晰。具有不同指示意义的元素组合于矿化的不同部位聚集而出现的分带,是用于评价矿化剥蚀程度及其成矿远景的重要地球化学参量  相似文献   

16.
The Emarat deposit, with a total proved reserve of 10 Mt ore grading 6% Zn and 2.26% Pb, is one of the largest Zn–Pb deposits in the Malayer–Esfahan belt. The mineralization is stratabound and restricted to Early Cretaceous limestones and dolomites. The ore consists mainly of sphalerite and galena with small amounts of pyrite, chalcopyrite, calcite, quartz, and dolomite. Textural evidence shows that the ore has replaced the host rocks and thus is epigenetic.Sulfur isotopes indicate that the sulfur in sphalerite and galena has been derived from Cretaceous seawater through thermochemical sulfate reduction. Sulfur isotope compositions of four apparently coprecipitated sphalerite–galena pairs suggest their precipitation was under equilibrium conditions. The sulfur isotopic fractionation observed for the sphalerite–galena pairs corresponds to formation temperatures between 77 °C and 168 °C, which agree with homogenization temperatures of fluid inclusions.Lead-isotope studies indicate that the lead in galena has been derived from heterogeneous sources including orogenic and crustal reservoirs with high 238U/204Pb and 232Th/204Pb ratios. Ages derived from the Pb-isotope model give meaningless ages, ranging from Early Carboniferous to future. It is probable that the Pb-isotope model ages that point to an earlier origin than the Early Cretaceous host rocks are derived from older reservoirs in the underlying Carboniferous or Jurassic units, either from the host rocks or from earlier-formed ore deposits within these units.This research and other available data show that the Emarat Zn–Pb deposit has many important features of Mississippi Valley-type (MVT) lead–zinc deposits and thus we argue that it is an MVT-type ore deposit.  相似文献   

17.
The Karchiga copper massive sulfide deposit is located in the Kurchum block of high-grade metamorphosed rocks. This block is part of the Irtysh shear zone, which belongs to the largest transregional fault in Central Asia. The deposit is associated with the gneiss–amphibolite middle unit of the metamorphic complex, which is distinct in the geochemical fields. The mineralization is spatially and paragenetically related to the amphibolite beds, which are ore-bearing together with terrigenous rocks.The deposit contains two spatially isolated lodes, in which all the discovered commercial reserves concentrate. They conformably overlie the host rocks and are tabular or ribbonlike. The mineralization has a close spatial relationship with Mg-rich anthophyllite-containing rocks. The sulfide ores are disseminated or massive and comprise pyrite, chalcopyrite, pyrrhotite, sphalerite, and magnetite. The ore is of Zn–Cu composition, in which Cu dominates considerably over Zn (average contents 2 and 0.4%, respectively; Cu/(Cu + Zn) = 0.83). The ores are rich in Co (up to 0.16%, averaging 0.02%), poor in Au and Ag (0.3 and 7.2 ppm, respectively), and almost free of Pb and Ba.All the rocks and ores experienced epidote–amphibolitic metamorphism. Meanwhile, the ores experienced a recrystallization and partial regeneration, but the initial shape of the lodes remained unchanged.The essentially chalcopyritic ores, the volcaniclastic ore-bearing rocks, and the spatial and genetic relationship of the mineralization with undifferentiated mafic and siliciclastic rocks suggest that this deposit belongs to the Besshi type, formed in a back-arc environment, near large rises.The studies show that Besshi-type Cu–Zn massive sulfide deposits differ from most of the polymetallic (Kuroko-type) deposits in Rudny Altai in the composition of volcanics and geodynamic settings, but belong to the same evolutionary series in this VMS province. Both types of deposits might have formed in the Paleozoic, during the main peak of VMS generation in the Earth's history.  相似文献   

18.
本文概述了新泰地区绿岩带的基本特征,构造及其演化规律,提出花岗质岩石是由幔源物质上侵及绿岩带部分重熔形成的。文中用测得κ系数0.37,作为对比太古宙绿岩带中科马提岩的标准,并得出金在科马提岩中初始丰度值,其西带为5.99ppb,东带为2.37ppb,反映了太古宙期间本地区地幔含金的不均一性。运用算术、几何平均法,对绿岩带各岩石类型、地层单元、花岗质岩石及其岩脉的含金性统计结果表明有的岩石变异系数增大,有利于金的分散与集中。文中对金矿化带地质地球化学特征及其成晕机制进行了论述,确定了矿化带的地表与金呈明显正相关元素为Ag、As、Sb、Ph、Zn,负相关元素为Cu、Hg,矿化带的深部与金呈正相关的元素为Sb,而Ag、As、Hg、Cn、Pb、Zn则与金的相关系数趋于零。从而对区内绿岩带金矿成因进行探讨,提出了变质-岩浆-热液充填交代成矿模式,并初步提出找矿地段。  相似文献   

19.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

20.
A new method of simultaneous multi-elemental analysis, Proton Induced X-ray Emission (PIXE), was used to detect trace elements in waters associated with a coal strip-mining operation in southern Indiana. Stream, pond, and ground water samples were collected and analyzed monthly from, or near, Sulphur Creek in Sullivan County. The concentrations of 26 major and trace elements were determined in samples from eleven locations: K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Mo, Cd, Sn, Sb, I, Ba, Hg, Pb, and U. Elemental concentrations fluctuated considerably throughout the 13-month sampling period and also among sampling sites. Nickel, Zn, As, Cd, Mn, Fe, and Ca were highest in the upstream water which was most acidic (pH = 2.9–4.0) because of old unreclaimed mining operations. The highest values recorded were Ni = 1662 ppb, Zn = 4953 ppb, As = 26 ppb, Cd = 93 ppb, Mn = 5063 ppb, Fe = 63 ppm, and Ca = 325 ppm. The concentrations of these elements decreased downstream as the pH of Sulphur Creek increased which was likely due to the influence of the calcareous glacial till cover in the area and the recent mining activity which disturbed overburden containing a high percentage of calcareous materials. Lead, I, Br, and Ti values were highest (661 ppb, 86 ppb, 70 ppb, and 45 ppb, respectively) in the ground water from the coal seam (pH approximately 7). Other elements which were relatively high in the pH 7 waters closest to the current mining operations (pond, stream, and groundwater) included K (17 ppm), Sr (3408 ppb), Ba (173 ppb), As (14 ppb), Rb (16 ppb), Sn (14 ppb), and Cu (3840 ppb). The highest Cu concentration was recorded at the point where drainage water from the mine entered Sulphur Creek. Gallium, U, Hg, and Mo were found in low (< 13 ppb for Ga and Hg; < 205 ppb for Mo and U) concentrations and only in the ponds within the mine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号