共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
M. J. Coe W. R. T. Edge J. L. Galache V. A. McBride 《Monthly notices of the Royal Astronomical Society》2005,356(2):502-514
This work represent the first major study of the optical and infrared characteristics of the mass donor companions to the X-ray pulsars in the Small Magellanic Cloud (SMC). In this work several new counterparts have been identified, and possible ones confirmed, as companions to X-ray pulsars in the SMC giving a total of 34 such objects now identified. In addition this work presents three new binary periods and confirms two X-ray periods using optical data for objects in this group. This homogeneous sample has been studied as a group to determine important general characteristics that may offer an insight into the evolution of such systems. In particular, the spectral class distribution shows a much greater agreement with those of isolated Be stars, and appears to be in some disagreement with the galactic population of Be stars in Be/X-ray binaries. Studies of the long-term optical modulation of the Be star companions reveal an extremely variable group of objects, a fact which will almost certainly make a major contribution to the pronounced X-ray variability. The spatial distribution of these systems within the SMC is investigated and strongly suggests a link between massive star formation and the H i density distribution. Finally, studies of the circumstellar disc characteristics reveal a strong link with optical variability offering important clues into the long-term stability of such discs. 相似文献
4.
K. E. McGowan M. J. Coe M. Schurch V. A. McBride J. L. Galache W. R. T. Edge R. H. D. Corbet S. Laycock A. Udalski D. A. H. Buckley 《Monthly notices of the Royal Astronomical Society》2007,376(2):759-770
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6−723533) and 700 s (CXOU J010206.6−714115), and present observations of two previously known pulsars RX J0057.3−7325 (SXP101) and SAX J0103.2−7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6−714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a subset of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour–colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources. 相似文献
5.
6.
M. P. E. Schurch M. J. Coe K. E. McGowan V. A. McBride D. A. H. Buckley J. L. Galache R. H. D. Corbet M. Still P. Vaisanen A. Kniazev K. Nordsieck 《Monthly notices of the Royal Astronomical Society》2007,381(4):1561-1568
We investigate the optical counterparts of recently discovered Be/X-ray binaries in the Small Magellanic Cloud (SMC). In total four sources, SXP101, SXP700, SXP348 and SXP65.8 were detected during the Chandra survey of the wing of the SMC. SXP700 and SXP65.8 were previously unknown. Many optical ground-based telescopes have been utilized in the optical follow-up, providing coverage in both the red and blue bands. This has led to the classification of all of the counterparts as Be stars and confirms that three lie within the Galactic spectral distribution of known Be/X-ray binaries. SXP101 lies outside this distribution and is the latest spectral type known. Monitoring of the Hα emission line suggests that all the sources barring SXP700 have highly variable circumstellar discs, possibly a result of their comparatively short orbital periods. Phase-resolved X-ray spectroscopy has also been performed on SXP65.8, revealing that the emission is indeed harder during the passage of the X-ray beam through the line of sight. 相似文献
7.
D. A. H. Buckley M. J. Coe J. B. Stevens K. van der Heyden L. Angelini N. White P. Giommi 《Monthly notices of the Royal Astronomical Society》2001,320(2):281-288
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼ XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag. 相似文献
8.
9.
Coe Buckley Charles Southwell & Stevens 《Monthly notices of the Royal Astronomical Society》1998,293(1):43-48
We report observations which identify the optical/IR counterpart to the ROSAT X-ray transient RX J0117.6−7330. The counterpart is suggested to be a B1–B2 star (luminosity class III–V) showing an IR excess and strong Balmer emission lines. The distance derived from reddening and systemic velocity measurements is consistent with the distance derived from X-ray measurements and puts the source in the Small Magellanic Cloud (SMC). 相似文献
10.
J. B. Stevens M. J. Coe D. A. H. Buckley 《Monthly notices of the Royal Astronomical Society》1999,309(2):421-429
The fields of eight X-ray sources in the Magellanic Clouds believed to be Be/X-ray binaries have been searched for possible Be-star counterparts. BVR c and H α CCD imaging was employed to identify early-type emission stars through colour indices and H α fluxes. Spectroscopy of five sources confirms the presence of H α emission in each case. Based on the positional coincidence of emission-line objects with the X-ray sources, we identify Be-star counterparts to the ROSAT sources RX J0032.9-7348, RX J0049.1-7250, RX J0054.9-7226 and RX J0101.0-7206, and to the recently discovered ASCA source AX J0051-722. We confirm the Be star nature of the counterpart to the HEAO1 source H0544-66. In the field of the ROSAT source RX J0051.8-7231 we find that there are three possible counterparts, each showing evidence for H α emission. We find a close double in the error circle of the EXOSAT source EXO 0531.1-6609, each component of which could be a Be star associated with the X-ray source. 相似文献
11.
12.
13.
14.
15.
M. P. E. Schurch M. J. Coe J. L. Galache R. H. D. Corbet K. E. McGowan V. A. McBride L. J. Townsend A. Udalski F. Haberl 《Monthly notices of the Royal Astronomical Society》2009,392(1):361-366
On 2006 August 30, SXP18.3 a high-mass X-ray binary (HMXB) in the Small Magellanic Cloud (SMC) with an 18.3 s pulse period was observed by Rossi X-ray Timing Explorer ( RXTE ). The source was seen continuously for the following 36 weeks. This is the longest type II outburst ever seen from a HMXB in the SMC. During the outburst, SXP18.3 was located from serendipitous XMM–Newton observations. The identification of the optical counterpart has allowed SXP18.3 to be classified as a Be/X-ray binary. This paper will report on the analysis of the optical and weekly RXTE X-ray data that span the last 10 yr. The extreme length of this outburst has for the first time enabled us to perform an extensive study of the pulse timing of a SMC Be/X-ray binary. We present a possible full orbital solution from the pulse timing data. An orbital period of 17.79 d is proposed from the analysis of the Optical Gravitational Lensing Experiment (OGLE) III light curve placing SXP18.3 on the boundary of known sources in the Corbet diagram. 相似文献
16.
17.
18.
Clark Tarasov Steele Coe Roche Shrader Buckley Larionov Larionova Lyuty Zaitseva Grunsfeld Fabregat & Parise 《Monthly notices of the Royal Astronomical Society》1998,294(1):165-176
The results of a 7-yr optical and UV spectroscopic study of the high-mass X-ray binary A 0535+26 are presented. It was found that throughout the period of the observations the line profile of Hα showed considerable variability. A correlation between the equivalent width of Hα and both V -band magnitude and ( B − V ) colour excess was observed, albeit with considerable scatter present in the data set. A giant X-ray flare in early 1994 was accompanied by a fading in optical and infrared photometric bands, and a reduction in the equivalent width of Hα. When the star was observed in 1994 September, it was found to have developed a double-peaked Hα profile, and further observations saw the V/R peak ratio vary cyclically, with a period of ∼1 yr. If this is identified as a global one-armed oscillation, it becomes the shortest period ever observed in a Be star. The accompanying photometric and spectroscopic observations provide a test of any theory seeking to describe the onset and behaviour of such a density wave. 相似文献
19.