首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The Montsec unit is one of the most important detached South-verging nappes within the South Pyrenean Central Unit (SPCU, Southern Pyrenees). A N–S cross-section of its Western sector, based on seismic reflection profiles, shows a hangingwall ramp geometry in Mesozoic strata, overlain by a syntectonic series of Lower Eocene sediments with growth geometry. The geometry of growth strata constrains the age of its movement between the Paleocene and the Middle Eocene. The geometry of the Western, oblique ramp of the South Pyrenean Central Unit is defined by a series of N–S folds, in some cases associated with underlying West-verging thrusts, as indicated by seismic reflection profiles and field data. In this paper, we propose that the geometry of the thrust wedge of Mesozoic units, progressively thinning from East to West, strongly contributed to constrain the location and geometry of the Western termination of the Montsec thrust. The hypothesis proposed is checked by a series of experimental wedges developed in a sandpack with lateral and three-dimensional thickness variations. Oblique structures form as thrusting progresses at the tip of the sand wedge.  相似文献   

2.
Seismic reflection data are used to investigate the structure of block of the Norwegian sector of the North Sea, situated in the Norwegian—Danish Basin. Zechstein (Upper Permian) salt occurs in this basin, having given rise to widespread and intense salt tectonics.A number of reflections can be recognized and identified on the seismic sections. They are the Top Oligocene, the Top Paleocene, the Base Tertiary, and the Top Lower Cretaceous reflections, as well as a Jurassic reflection and the Base Permian Salt reflection (only found locally).The geological structure of the area is illustrated by means of seismic contour maps and cross-sections.Three salt plugs (a northern, a central and a southern one) are present in block 8/8. Two of these pierce Base Tertiary. The third (southern) one is more deep-seated. A major growth fault connects the northern and central plugs. The southern salt plug is surrounded by a rim syncline.The movements on the major fault and in the salt plugs in the course of geological time are investigated. It is found that there is evidence for movement in Late Jurassic, Cretaceous and Tertiary times until at least Early Miocene times.The possible cause of the structure of block is considered in detail. It is found that the movement of the salt in at least the central salt plug is intimately connected with movements on the major growth fault. The hypothesis is advanced that all local tectonic movements are due to the flow of salt and a scheme for this salt flow is proposed. A number of special features of the tectonics of the area which support this concept are dis- cussed.Volumetric considerations are also used. The approximate volume of the salt in the plugs as well as the volume of salt drained from part of the area are calculated. Finally, deep reflection evidence is used to estimate the depth of the base of the Zech- stein salt and the top of the crystalline basement in the southern part of the area.  相似文献   

3.
张捷芳 《地质论评》1993,39(1):36-43
根据南海北部大陆架18个钻井561个样品的分析鉴定,说明含有Characeae,Clavatoraceae和营养体三类轮藻。依据化石特征其地层时代为早、晚白垩世,古新世,渐新世和晚第三纪。其中早、晚白垩世和古新世地层的轮藻化石和岩性,可分别与广东陆地上,下白垩统官草湖群,上白垩统大塱山组及古新统(土布)心组和西(土布)组等对比,表明两者在白垩纪—古新世期间连为一体。恩平组沉积后隆升,自渐新世起南海北部大陆架逐渐沉降并形成今日南海。  相似文献   

4.
A thick olistostrome strata of late Paleocene-early Eocene age is outlined in the northern flank of the Northwestern Caucasus folded structure in the Ubinka river valley, which shows the significant role of earlier Cenozoic tectonic movements in forming the alpine structure of the region. The largest part of the strata is composed of dark weakly calcareous clays, which were earlier recognized as Lower Cretaceous deposits. Olistoliths and large olistoplaques are mostly of light calcareous rocks in which microfauna of Cenomanian and Maastrichtian ages were discovered in dark clays. A poor series of foraminifers was recognized in the dark clays hosting these olistoliths; this series do not enable one to determine with certainty the age of the strata (of approximately the late Paleocene-early Eocene). Small structural forms were recognized in olistoliths and olistoplaques, which are not traced in the matrix, this indicates that a series of folded and fissured structures were formed before these olistoliths and olistoplaques appeared in the olistostrome strata.  相似文献   

5.
Wide regions of Morocco, from the Meseta to the High Atlas, have experienced km-scale upward vertical movements during Middle Jurassic to Early Cretaceous times following the appearance of oceanic crust in the Central Atlantic. The area experiencing exhumation was flanked to the W by a domain of continuous subsidence, part of which is named the Essaouira-Agadir basin. Comparison with vertical movement curves predicted by lithospheric thinning models shows that only 50–60?% of the subsidence documented in the Essaouira basin can be explained by post-rift thermal relaxation and that <30–40?% of the observed exhumation can be explained by processes (in)directly related to the evolution of the Central Atlantic rifted margin. Syn-sedimentary structures in Middle Jurassic to Lower Cretaceous formations of the Eassouira-Agadir basin are common and range from m-scale folds and thrusts to km-scale sedimentary wedges. These structures systematically document coeval shortening generally oriented at high angle to the present margin. As a working hypothesis, it is suggested that regional shortening can explain the structural observations and the enigmatic vertical movements.  相似文献   

6.
The Glueckstadt Graben is one of the deepest post-Permian structures within the Central European Basin system and is located right at its “heart” at the transition from the North Sea to the Baltic Sea and from the Lower Saxony Basin to the Rynkoebing–Fyn High.The Mesozoic to recent evolution is investigated by use of selected seismic lines, seismic flattening and a 3D structural model. A major tectonic event in the latest Middle–Late Triassic (Keuper) was accompanied by strong salt tectonics within the Glueckstadt Graben. At that time, a rapid subsidence took place within the central part, which provides the “core” of the Glueckstadt Graben. The post-Triassic tectonic evolution of the area does not follow the typical scheme of thermal subsidence. In contrast, it seems that there is a slow progressive activation of salt movements triggered by the initial Triassic event. Starting with the Jurassic, the subsidence centre partitioned into two parts located adjacent to the Triassic “core.” In comparison with other areas of the Central European Basin system, the Glueckstadt Graben was not strongly affected by additional Jurassic and Cretaceous events. During the late Jurassic to Early Cretaceous, the area around the Glueckstadt Graben was affected by relative uplift with regional erosion of the elevated relief. However, subsidence was reactivated and accelerated during the Cenozoic when a strong subsidence centre developed in the North Sea. During Paleogene and Quaternary–Neogene, the two centres of sedimentation moved gradually towards the flanks of the basin.The data indeed point toward a control of post-Permian evolution by gradual withdrawal of salt triggered by the initial exhaustion along the Triassic subsidence centre. In this sense, the Glueckstadt Graben was formed at least partially as “basin scale rim syncline” during post-Permian times. The present day Hamburger, East and Westholstein Troughs are the actual final state of this long-term process which still may continue and may play a role in terms of young processes and, e.g., for coastal protection.  相似文献   

7.
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between “deeper” deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and “shallower” deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard.  相似文献   

8.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks 10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

9.
A dense grid of multichannel high-resolution seismic sections from the Bay of Kiel in the western Baltic Sea has been interpreted in order to reveal the Mesozoic and Cenozoic geological evolution of the northern part of the North German Basin. The overall geological evolution of the study area can be separated into four distinct periods. During the Triassic and the Early Jurassic, E–W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. The deposition ceased during the Middle Jurassic, when the entire area was uplifted as a result of the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic and Lower Jurassic strata. This event is marked by a clear angular unconformity on all the seismic sections. The region remained an area of non-deposition until the end of the Early Cretaceous, when the sedimentation resumed in the area. Throughout the Late Cretaceous the sedimentation took place under tectonic quiescence. Reactivated salt movement is observed at the Cretaceous Cenozoic transition as a result of the change from an extensional to compressional regional stress field. The vertical salt movement influenced the Cenozoic sedimentation and resulted in thin-skinned faulting.  相似文献   

10.
The results of our new paleomagnetic investigations on 21 sites in the Cévennes and Lure regions as well as previous studies demonstrate that all Mesozoic marly limestones of SE France exhibit similar paleomagnetic behavior with remagnetization disputed in age. The studied areas have the particularity to have been folded before (Late Eocene), the Alpine folding (Oligo–Miocene). Samples (201 marly limestones) dated from Lower Jurassic to Lower Cretaceous have been demagnetized by thermal treatment. They all present a well-defined component with a normal polarity which was mostly obtained between 200 and 350 °C. Numerous arguments lead from pretectonic to syntectonic widespread remagnetization related to orogenic fluid circulation affecting the whole basin. An Eocene age (between 35 and 40 Ma) is obtained for this remagnetization thanks both to the comparison of the average inclination of all regional paleomagnetic studies (+54.9°/−1.5°) with the expected paleomagnetic inclination and the syntectonic character of remagnetization.  相似文献   

11.
点苍山新生代推覆构造的确立及其地质意义   总被引:2,自引:0,他引:2  
沙绍礼 《云南地质》2002,21(3):250-255
点苍山地处三江构造带东缘,其东侧扬子陆块上的古生代地层,越过洱海断裂推覆到苍山西坡的中、新生代地之上:下泥盆统青山组推覆至下白垩统景星组之上;上二叠叠统乌龙坝组及红岩子组推覆在始新统宝相寺组之上。三江构造带中的上三维统歪古村组及三合洞组推覆在上侏罗统坝注路组之上。推覆时期为始新世-上新世,推覆构造机制是陆内汇聚挤压所至。  相似文献   

12.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (∼90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks ∼10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

13.
塔西南地区位于新特提斯洋北缘,与中亚地区的阿莱盆地、费尔干纳盆地和塔吉克盆地连通。本文综合前人构造研究成果及塔西南地区最新钻井、野外露头资料,发现塔西南地区白垩系—古近系经历了陆相-海相-陆相的沉积演化过程。下白垩统及始新统上部—渐新统发育陆相沉积,为冲积扇-扇三角洲-湖泊沉积体系;上白垩统—始新统下部发育海相沉积,识别出蒸发台地、开阔台地、局限台地和有障壁海岸等沉积相。中亚地区白垩系—古近系受新特提斯洋海侵-海退过程的影响,整体与塔西南地区同步,也经历了陆相-海相-陆相的沉积演化过程。  相似文献   

14.
In the Pyrenees, the development of mylonites zones is one of the most striking structural features. Two sets of mylonites of regional extent have been recognized: large longitudinal E-W to N110°E trending zones (e.g. Mérens fault and North Pyrenean fault) and oblique NW-SE trending zones cross-cutting both the Hercynian and the post-Hercynian terrains. The longitudinal zones limit the major structural zones of the Pyrenees and are associated with NW-SE “en échelons” folds in the Mesozoic terrains and rotations of rootless plutonic or gneissic massifs, acting as competent inclusions in a more ductile matrix, in the Hercynian basement. The oblique mylonite zones limit map-scale fold-bands and appear as the sheared limbs of these folds.The age of the oblique zones and of the major movements along the longitudinal zones is clearly Alpine and the “en échelons” folds seem to have controlled the sedimentation during the Upper Albian and possibly during the Upper Cretaceous. Early movements along the longitudinal zones may have been Hercynian.The analysis of the structures at all scales leads us to interpret these mylonite zones and associated structures as the ultimate result of a transcurrent simple shear acting during the whole Mesozoic period. This strike-slip shearing was probably associated with an extension perpendicular to it from the Permian to the Upper Cretaceous and then to a shortening component also perpendicular to it from the Late Cretaceous to the Eocene.The development of the mylonite zones appears to have predated the major Alpine thrusting but to have been reactivated during this thrusting, acting as initiation sites for the thrusts or as oblique ramps in the case of the oblique mylonite zones.  相似文献   

15.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


16.
In the Mejez El Bab–Testour area (northern Tunisia), the Early Eocene extension induced block tilting and salt tectonics of the Triassic evaporites. Tectonic events and halokinesis have determined the organization of Ypresian sediments. Diapiric structures have been generated during Cretaceous along the east–west, north–south and NE–SW major faults and emphasised during Lower Eocene. In this region, the Ypresian deposits constitute a filling sequence and show several thickness and facies variations. They correspond to a Nummulitic and Globigerina mixed facies characterizing a platform-basin transition zone. To cite this article: H. El Ouardi, C. R. Geoscience 334 (2002) 141–146.  相似文献   

17.
The platform limestones of Apulia (Italy) outcropping in the Gargano peninsula have been restudied. Paleomagnetic research has been carried out on Upper Cretaceous, Lower Cretaceous and Jurassic rocks. Despite the low intensities of the NRM (10–100 μA/m), all samples (268) could be cleaned by stepwise A.F. and/or thermal demagnetization treatments. NRM directions could be determined accurately and reproducibly for 85% of the samples, using a ScT cryogenic magnetometer and double precision measuring procedures. NRM of the Jurassic limestone is carried by secondary haematite and the results are therefore rejected from further consideration. The Upper and Lower Cretaceous limestones have an NRM carried by magnetite. Minor bedding tilt corrections improve the grouping of the site-mean results. The Upper Cretaceous “Scaglia” limestone (Turonian-Senonian) reveals a characteristic mean direction of decl. = 327.7°, incl. = 38.2°, α95 = 4.3° (21 sites), while the Lower Cretaceous “Maiolica” limestone (Neocomian-Aptian/Albian) reveals a characteristic mean direction of decl. = 303.1°, incl. = 35.1°, α95 = 8.7° (8 sites). The Cretaceous results show a post-Aptian/Albian counterclockwise rotation of about 25°, which is expressed by the smeared distribution of the Late Cretaceous site-mean results and a post-Senonian (i.e. Tertiary) counterclockwise rotation of the same amount with respect to the pole. These results are in excellent agreement with contemporaneous paleomagnetic results from other peri-Adriatic regions. A Tertiary counterclockwise rotation of all the stable Adriatic block is strongly supported by the new results.  相似文献   

18.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

19.
Twenty-four new zircon and apatite fission track ages from the Getic and Danubian nappes in the South Carpathians are discussed in the light of a compilation of published fission track data. A total of 101 fission track ages indicates that the Getic nappes are generally characterized by Cretaceous zircon and apatite fission track ages, indicating cooling to near-surface temperatures of these units immediately following Late Cretaceous orogeny.The age distribution of the Danubian nappes, presently outcropping in the Danubian window below the Getic nappes, depends on the position with respect to the Cerna-Jiu fault. Eocene and Oligocene zircon and apatite central ages from the part of the Danubian core complex situated southeast of this fault monitor mid-Tertiary tectonic exhumation in the footwall of the Getic detachment, while zircon fission track data from northwest of this fault indicate that slow cooling started during the Latest Cretaceous. The change from extension (Getic detachment) to strike-slip dominated tectonics along the curved Cerna-Jiu fault allowed for further exhumation on the concave side of this strike-slip fault, while exhumation ceased on the convex side. The available fission track data consistently indicate that the change to fast cooling associated with tectonic denudation by core complex formation did not occur before Late Eocene times, i.e. long after the cessation of Late Cretaceous thrusting.Core complex formation in the Danubian window is related to a larger-scale scenario that is characterized by the NNW-directed translation, followed by a 90° clockwise rotation of the Tisza-Dacia “block” due to roll-back of the Carpathian embayment. This led to a complex pattern of strain partitioning within the Tisza-Dacia “block” adjacent to the western tip of the rigid Moesian platform. Our results suggest that the invasion of these southernmost parts of Tisza-Dacia started before the Late Eocene, i.e. significantly before the onset of Miocene-age rollback and associated extension in the Pannonian basin.  相似文献   

20.
通过开展二维地震资料调查和重处理,结合钻井、重磁、海陆对比等新老资料开展联合解释认为:东海陆架盆地南部中生界具有分布广、厚度大、沉积中心位于东部,新生界则呈现东西厚中间薄,新生代构造单元中的台北凸起、观音凸起和雁荡凸起上均有中生界分布;白垩系较侏罗系分布更为广泛,侏罗系西部边界为雁荡凸起东侧,白垩系西部边界以瓯江凹陷西侧为界;中生界三口钻井分析结果发现了确凿的海相标志,证实了中生界东海陆架盆地发生多次海侵,结合围区沉积特征认为侏罗纪存在南北向和东西向的海侵,白垩纪主要体现为东西向的海侵;研究区中生界发育中下侏罗统、下白垩统两套烃源岩,新生界发育古新统、始新统、渐新统和中新统四套烃源岩,具有较好的油气资源前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号