首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ65Cu, δ66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g−1 Cu and 2084 μg g−1 Zn in the organic horizons. The δ65Cu values varied little (−0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ66ZnIRMM values were isotopically lighter in ash (−0.41‰) and organic horizons (−0.85‰ to −0.47‰) than in bedrock (−0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.  相似文献   

2.
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles.Average δ66Zn and δ65Cu values for streams varied from +0.02‰ to +0.46‰ and −0.7‰ to +1.4‰, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ∼0.3‰ (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.  相似文献   

3.
High-precision Zn isotopic variations are reported for carbonaceous chondrites (CC), equilibrated (EOC) and unequilibrated (UOC) ordinary chondrites, iron meteorites from the IAB-IIICD (nonmagmatic) and IIIA (magmatic) groups, and metal from the Brenham pallasite. For irons, δ65Cu values are also reported. Data have also been obtained on a coarse-grained type-B calcium-, aluminum-rich refractory inclusion (CAI) from Allende and on acid leaches of Allende (CV3), Krymka (LL3), and Charsonville (H6). Variations expressed as δ66Zn (deviation in parts per thousand of 66Zn/64Zn in samples relative to a standard) spread over a range of 0.3‰ for carbonaceous chondrites, 2‰ for ordinary chondrites, and 4‰ for irons.The measured 66Zn/64Zn, 67Zn/64Zn, and 68Zn/64Zn ratios vary linearly with mass difference and define a common isotope fractionation line with terrestrial samples, which demonstrates that Zn was derived from an initially single homogeneous reservoir. The δ66Zn values are correlated with meteorite compositions and slightly decrease in the order CI, CM, CV-CO, and to UOC. The isotopically light Zn of Allende CAI and the acid-resistant residues of Allende and Krymka show that the light component is associated with refractory material, presumably minerals from the spinel-group. This, together with the reverse correlation between relative abundances of light Zn isotopes and volatile element abundances, suggests that Zn depletion in planetary bodies with respect to CI cannot be ascribed to devolatilization of CI-like material. These observations rather suggest that refractory material reacted with a gas phase enriched in the lighter Zn isotopes. Alternatively, chondrules with their associated rims should carry a light Zn isotopic signature. The δ66Zn values of unequilibrated chondrites are rather uniform, whereas equilibrated chondrites show distinctly more isotopic variability.The values of δ65Cu-δ66Zn in irons define two trends. The moderate and positively correlated Cu and Zn isotope variations in IIIA and pallasite samples probably reflect crystallization of silicate, sulfide, and solid metal from the liquid metal. The range of δ66Zn values of the IAB-IIICD group is large (>3‰) and contrasts with the moderate fractionation of Cu isotopes. We interpret this feature and the negative δ66Zn-δ65Cu correlation as reflecting mixing, possibly achieved by percolation, between metals from a regolith devolatilized at low temperature (enriched in heavy zinc) and metallic liquids formed within the parent body.  相似文献   

4.
Ion-exchange fractionation of copper and zinc isotopes   总被引:5,自引:0,他引:5  
Whether transition element isotopes can be fractionated at equilibrium in nature is still uncertain. Standard solutions of Cu and Zn were eluted on an anion-exchange resin, and the isotopic compositions of Cu (with respect to Zn) of the eluted fractions were measured by multiple-collector inductively coupled plasma mass spectrometry. It was found that for pure Cu solutions, the elution curves are consistent with a 63Cu/65Cu mass fractionation coefficient of 0.46‰ in 7 mol/L HCl and 0.67‰ in 3 mol/L HCl between the resin and the solution. Batch fractionation experiments confirm that equilibrium fractionation of Cu between resin and 7 mol/L HCl is ∼0.4‰ and therefore indicates that there is no need to invoke kinetic fractionation during the elution. Zn isotope fractionation is an order of magnitude smaller, with a 66Zn/68Zn fractionation factor of 0.02‰ in 12 mol/L HCl. Cu isotope fractionation results determined from a chalcopyrite solution in 7 mol/L HCl give a fractionation factor of 0.58‰, which indicates that Fe may interfere with Cu fractionation.Comparison of Cu and Zn results suggests that the extent of Cu isotopic fractionation may signal the presence of so far unidentified polynuclear complexes in solution. In contrast, we see no compelling reason to ascribe isotope fractionation to the coexistence of different oxidation states. We further suggest that published evidence for iron isotopic fractionation in nature and in laboratory experiments may indicate the distortion of low-spin Fe tetrahedral complexes.The isotope geochemistry of transition elements may shed new light on their coordination chemistry. Their isotopic fractionation in the natural environment may be interpreted using models of thermodynamic fractionation.  相似文献   

5.
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are −0.73 ± 0.08‰ for Cu and −0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).  相似文献   

6.
Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution-solid = δ65Cusolution − δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to −0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution-solid ranging from ∼+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable.  相似文献   

7.
Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ∼−0.4‰ (−0.25 ± 0.36‰, 1σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.  相似文献   

8.
Copper stable isotope ratios are fractionated during various biogeochemical processes and may trace the fate of Cu during long-term pedogenetic processes. We assessed the effects of oxic weathering (formation of Cambisols) and podzolization on Cu isotope ratios (δ65Cu). Two Cambisols (oxic weathered soils without strong vertical translocations of soil constituents) and two Podzols (soils showing vertical translocation of organic matter, Fe and Al) were analyzed for Cu concentrations, partitioning of Cu in seven fractions of a sequential extraction and δ65Cu values in bulk soil. Cu concentrations in the studied soils were low (1.4-27.6 μg g−1) and Cu was mainly associated with strongly bound Fe oxide- and silicate-associated forms. Bulk δ65Cu values varied between −0.57‰ and 0.44‰ in all studied horizons. The O horizons had on average significantly lighter Cu isotope compositions (−0.21‰) than the A horizons (0.13‰) which can either be explained by Cu isotope fractionation during cycling through the plants or deposition of isotopically light Cu from the atmosphere. Oxic weathering without pronounced podzolization in both Cambisols and a weakly developed Podzol (Haplic Podzol 2) caused no significant isotope fractionation in the single profiles, while a slight tendency to lower δ65Cu values with depth was visible in all four profiles. This is the opposite depth distribution of δ65Cu values to that we observed in hydromorphic soils (soils which show indication of redox changes because of the influence of water saturation) in a previous study. In a more pronounced Podzol (Haplic Podzol 1), δ65Cu values and Cu concentrations decreased from Ah to E horizons and increased again deeper in the soil. Humus-rich sections of the Bhs horizon had higher Cu concentrations (2.8 μg g−1) and a higher δ65Cu value (−0.18‰) than oxide-rich sections (1.9 μg g−1, −0.35‰) suggesting Cu translocation between E and B horizons as organo-Cu complexes. The different depth distributions in oxic weathered and hydromorphic soils and the pronounced vertical differences in δ65Cu values in Haplic Podzol 1 indicate a promising potential of δ65Cu values to improve our knowledge of the fate of Cu during long-term pedogenetic processes.  相似文献   

9.
Zinc isotope ratios were measured in the top sections of dated ombrotrophic peat cores in Finland to investigate their potential as proxies for atmospheric sources and to constrain post depositional processes affecting the geochemical record. The peat deposits were located in Hietajärvi, a background site well away from any point pollution source and representing ‘background’ conditions, in Outokumpu, next to a mining site, and in Harjavalta, next to a smelter. Measured total concentrations, calculated excess concentrations and mass balance considerations suggest that zinc is subjected to important biogeochemical cycling within the peat. Significant isotopic variability was found in all three peat bogs, with heavier zinc in the deeper and lighter zinc in the upper sections. Isotope ratios and concentrations correlated in the two peats located next to dominant point sources, i.e. the smelting and mining site, suggesting that zinc isotopes trace pollution sources. Concentration and isotope peaks were offset from the period of mining and smelting activity, supporting migration of zinc down the profile. The δ66ZnJMC (where δ66Zn = [(66Zn/64Zn)sample/(66Zn/64Zn)JMC-standard − 1] × 103) of the top section sample at the remote Hietajärvi site was 0.9‰ and we suggest this represents the regional background isotope signature of atmospheric zinc. The deeper sections of the peat cores show isotopically heavier zinc than any potential atmospheric source, indicating that post depositional processes affected the isotopic records. The large variations encountered (up to 1.05‰ for δ66Zn) and Rayleigh modelling imply that multiple fractionation of zinc during diagenetic alterations occurs and nutrient recycling alone cannot explain the fractionation pattern.We propose that zinc isotopes are amenable to identify different atmospheric zinc sources, including zinc derived from anthropogenic activities such as mining and smelting, but multiple biogeochemical processes seriously affect the record and they need to be evaluated and assessed carefully if zinc isotopes are used in terrestrial paleorecords.  相似文献   

10.
We examined the copper isotope ratio of primary high temperature Cu-sulfides, secondary low temperature Cu-sulfides (and Cu-oxides) as well as Fe-oxides in the leach cap, which represent the weathered remains of a spectrum of Cu mineralization, from nine porphyry copper deposits. Copper isotope ratios are reported as δ65Cu‰ = ((65Cu/63Cusample/65Cu/63CuNIST 976 standard) − 1) ? 103. Errors for all the analyses are ± 0.14‰ (determined by multiple analyses of the samples) and mass bias was corrected through standard-sample-standard bracketing. The overall isotopic variability measured in these samples range from − 16.96‰ to 9.98‰.  相似文献   

11.
The stable copper isotope composition of 79 samples of primary and secondary copper minerals from hydrothermal veins in the Schwarzwald mining district, South Germany, shows a wide variation in δ65Cu ranging from −2.92 to 2.41‰. We investigated primary chalcopyrite, various kinds of fahlores and emplectite, as well as supergene native copper, malachite, azurite, cuprite, tenorite, olivenite, pseudomalachite and chrysocolla. Fresh primary Cu(I) ores have at most localities copper isotope ratios (δ65Cu values) of 0 ± 0.5‰ despite the fact that the samples come from mineralogically different types of deposits covering an area of about 100 by 50 km and that they formed during three different mineralization events spanning the last 300 Ma. Relics of the primary ores in oxidized samples (i.e., chalcopyrite relics in an iron oxide matrix with an outer malachite coating) display low isotope ratios down to −2.92‰. Secondary Cu(I) minerals such as cuprite have high δ65Cu values between 0.4 and 1.65‰, whereas secondary Cu(II) minerals such as malachite show a range of values between −1.55 and 2.41‰, but typically have values above +0.5‰. Within single samples, supergene oxidation of fresh chalcopyrite with a δ value of 0‰ causes significant fractionation on the scale of a centimetre between malachite (up to 1.49‰) and relict chalcopyrite (down to −2.92‰). The results show that—with only two notable exceptions—high-temperature hydrothermal processes did not lead to significant and correlatable variations in copper isotope ratios within a large mining district mineralized over a long period of time. Conversely, low-temperature redox processes seriously affect the copper isotope compositions of hydrothermal copper ores. While details of the redox processes are not yet understood, we interpret the range in compositions found in both primary Cu(I) and secondary Cu(II) minerals as a result of two competing controls on the isotope fractionation process: within-fluid control, i.e., the fractionation during the redox process among dissolved species, and fluid-solid control, i.e., fractionation during precipitation involving reactions between dissolved Cu species and minerals. Additionally, Rayleigh fractionation in a closed system may be responsible for some of the spread in isotope compositions. Our study indicates that copper isotope variations may be used to decipher details of natural redox processes and therefore may have some bearing on exploration, evaluation and exploitation of copper deposits. On the other hand, copper isotope analyses of single archeological artefacts or geological or biological objects cannot be easily used as reliable fingerprint for the source of copper, because the variation caused by redox processes within a single deposit is usually much larger than the inter-deposit variation.  相似文献   

12.
Differences between the δ18O values of Si- and Fe-rich immiscible liquids in the system Fe2SiO4-KAlSi2O6-SiO2 (Fa-Lc-Q) in isothermal experiments at 0.1 MPa have been determined experimentally to be 0.6 permil. The observed partition of 18O into the Si-rich liquid is consistent with previous experience with the preferential partition of 18O into Si-rich minerals in isothermal equilibrium with minerals of less polymerized structure. Crystallochemical principles affect the distribution of oxygen isotopes in coexisting isothermal liquids in the same way as they apply to isothermally coexisting crystals. The effects of Soret (thermal) diffusion on the distribution of oxygen isotopes in silicate liquids above the solvus in the system Fa-Lc-Q under conditions of an imposed temperature gradient of ca. 250 °C over 4 mm and at 2 GPa have also been investigated experimentally. Both the magnitude and the direction of separation of oxygen isotopes as a result of Soret diffusion are unexpected. For each of the silicate liquids, the cold end of the charge is enriched in 18O by up to 4.7 permil, and the highest δ18O values are associated with the most silica-poor compositions. The distribution of oxygen isotopes appears to be similar in each liquid, regardless of their chemical compositions, which is in contrast to the behaviour of cations whose distributions are compositionally dependent and characterized by strong crystallochemical effects wherein network-forming species such as Si and Al separate to the hot end and Mg, Fe and Ca are segregated preferentially to the cold end. Structural units in the melts are evidently less selective between oxygen isotopes than between cations, because oxygen redistribution over all possible sites in these units proceeds according to mass. Self-diffusion coefficients of oxygen in basaltic liquids estimated from the Soret experiments are in accord with those from other isotope tracer experiments, and comparable to those of Si. The possible effects of Soret diffusion on the oxygen isotopic composition of metasomatic veins in the mantle are examined in light of these data, and indicate that decay of the thermal gradients in the veins exceeds that of the diffusion of oxygen needed to produce variations in the δ18O values of mantle minerals. Variations in oxygen isotope ratios in most natural systems as a result of Soret effects are unlikely. Received: 6 January 1997 /  Accepted: 28 June 1998  相似文献   

13.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

14.
Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2σ) to +0.34 ± 0.17‰ (2σ) at the lowest horizons and from +0.38 ± 0.45‰ (2σ) to +0.76 ± 0.14‰ (2σ) near the surface. The δ66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe2O4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ66Zn values of +0.81 ± 0.20‰ (2σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.  相似文献   

15.
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ65Cu (solid-solution) = −1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution.Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.  相似文献   

16.
Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, δ56Fe and δ66Zn isotopic signatures of filtered stream water samples varied by ∼3.5‰ and 0.4‰, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in δ56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in δ66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<−2.0‰) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4‰). Acidic drainage from mine wastes contributed heavier dissolved Fe (∼+0.5‰) and lighter Zn (∼+0.2‰) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (δ56Fe ∼ 0‰) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.  相似文献   

17.
High-precision Ni isotopic variations are reported for the metal phase of equilibrated and unequilibrated ordinary chondrites, carbonaceous chondrites, iron meteorites, mesosiderites, and pallasites. We also report new Zn and Cu isotopic data for some of these samples and combine them with literature Fe, Cu, and Zn isotope data to constrain the fractionation history of metals during nebular (vapor/solid) and planetary (metal/sulfide/silicate) phase changes.The observed variations of the 62Ni/58Ni, 61Ni/58Ni, and 60Ni/58Ni ratios vary linearly with mass difference and define isotope fractionation lines in common with terrestrial samples. This implies that Ni was derived from a single homogeneous reservoir. While no 60Ni anomaly is detected within the analytical uncertainties, Ni isotopic fractionation up to 0.45‰ per mass-difference unit is observed. The isotope compositions of Ni and Zn in chondrites are positively correlated. We suggest that, in ordinary chondrites, exchange between solid phases, in particular metal and silicates, and vapor followed by mineral sorting during accretion are the main processes controlling these isotopic variations. The positive correlation between Ni and Zn isotope compositions contrasts with a negative correlation between Ni (and Zn) and Cu isotope compositions, which, when taken together, do not favor a simple kinetic interpretation. The observed transition element similarities between different groups of chondrites and iron meteorites are consistent with the genetic relationships inferred from oxygen isotopes (IIIA/pallasites and IVA/L chondrites). Copper is an exception, which we suggest may be related to separate processing of sulfides either in the vapor or during core formation.  相似文献   

18.
We report Zn isotopic ratios (δ66Zn) of river suspended particulate matter (SPM) and floodplain deposits (FD) from the Seine basin, France, with a precision ?0.05‰. A decrease in δ66Zn from 0.30‰ to 0.08‰ is observed in SPM from the upstream to downstream parts of the fluvial system, associated with an increase in Zn concentration from 100 ppm to 400 ppm. The Zn/Al of SPM at the river mouth is up to five times greater than the Zn/Al of the natural background, and by normalizing to the later value we define a Zn enrichment factor. Suspended sediments from a temporal series of samples collected in Paris display a similar variation in δ66Zn of between 0.08‰ and 0.26‰, while showing an inverse relationship between the Zn enrichment factor and δ66Zn. The amount of Zn transported as suspended load varies from 10% to 90%, as a function of increasing discharge. The δ66Zn of SPM and the dissolved load are correlated, suggesting that adsorption processes are probably not the dominant process by which the Zn enrichment of SPM takes place. Instead, we interpret our data as reflecting the mixture of two main populations of suspended particles with distinct δ66Zn. The first is characteristic of natural silicate particles transported by erosion processes to the river, while the second likely represents anthropogenic particles derived from wastewater treatment plants or combined sewer overflows. Based on isotopic ratios, we calculate that 70% of Zn in SPM of the Seine River in Paris is of anthropogenic origin.  相似文献   

19.
A sediment core from Guanabara Bay (Brazil) was analyzed for 210Pb dating, grain size, total organic carbon (TOC) and total nitrogen, carbon stable isotope ratio (δ13C), nitrogen stable isotope ratio (δ15N) and the metals Fe, Mn, Ni, Co, Cu, Pb, V and Zn, to assess the influence of land use changes on the aquatic system in a region for which large industrial and urban development is expected in the next few decades. To obtain baseline data for improving the monitoring of the expected increase in anthropogenic impacts from surrounding drainage basins, a multivariate analysis of data from different sediment layers was carried out to evaluate the dated sediment record. The geochemical data suggested three different sedimentary phases along the last 200 years. Before the 1880s, the highest clay and TOC contents were observed, where the C/N ratios and the δ13C values suggested a mixture of algal and terrestrial organic matter and the lowest concentrations of Co, Cu, Pb, V and Zn, for which background levels were estimated (4.6, 2.7, 14.9, 24.3 and 70.2 mg kg−1, respectively). From the 1880s to the 1950s, the metal concentrations and sand particles increased, but no change in organic matter quality was observed, reflecting a period of land use change, still without significant sewage input. After the 1950s, the sedimentation rate increased from 0.42 to 0.77 cm year−1 and increasing urban sewage input was evidenced by lower C/N ratios, higher δ15N, decrease of Fe and Mn concentrations and increased fluxes of metals and TOC, which showed a good relationship with population growth data.  相似文献   

20.
Isotopic fractionation of Cu in tektites   总被引:1,自引:0,他引:1  
Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号