首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Using K-coronameter observations made by the High Altitude Observatory at Haleakala and Mauna Loa, Hawaii during 1964–1976, we determine the apparent recurrence period of white-light solar coronal features as a function of latitude, height, and time. A technique based on maximum entropy spectral analysis is used to produce rotational period estimates from daily K-coronal brightness observations at 1.125R S and 1.5R S from disk center and at angular intervals of 5° around the Sun's limb. Our analysis reaffirms the existence of differential rotation in the corona and describes both its average behavior and its large year-to-year variations. On the average, there is less differential rotation at the greater height. After 1966–1967 we observe a general increase in coronal rotation rate which may relate to similar behavior reported for the equatorial photospheric Doppler rate. However, the coronal rate increase is significantly greater than the photospheric. If K-coronal features reflect the rotation at depth in the Sun, the long-term rate increase and the variable differential rotation may be evidence for dynamically important exchanges of energy and momentum in the upper convection zone.  相似文献   

2.
We report quantitative analysis of the radial gradient of solar angular velocity at depths down to about 15 Mm below the solar surface for latitudes up to 75° using the Michelson Doppler Imager (MDI) observations of surface gravity waves (fmodes) from the Solar and Heliospheric Observatory (SOHO). A negative outward gradient of around –400 nHz/R , equivalent to a logarithmic gradient of the rotation frequency with respect to radius which is very close to –1, is found to be remarkably constant between the equator and 30° latitude. Above 30° it decreases in absolute magnitude to a very small value at around 50°. At higher latitudes the gradient may reverse its sign: if so, this reversal takes place in a thin layer extending only 5 Mm beneath the visible surface, as evidenced by the most superficial modes (with degrees l>250). The signature of the torsional oscillations is seen in this layer, but no other significant temporal variations of the gradient and value of the rotation rate there are found.  相似文献   

3.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

4.
Gary D. Parker 《Solar physics》1986,104(2):333-345
The rotation of the solar electron corona is determined for intervals when nearly periodic variations dominated the polarization brightness record during 1964–1976. Coronal rotation rates derived for 765 intervals vary with height, latitude, and interval length. These rotation rates show a decrease of differential rotation with height and support earlier rotation studies which included much less stationary data. Analyses of the selected intervals and autocorrelation of the complete K-coronameter data set give quantitative estimates of the rotational effects of magnetic tracer age and lifetime. The principal effects detected are a relatively fast rotation of very long-lived tracers at high latitude and a relatively fast rotation of very short-lived tracers at low latitudes. The observations indicate that high-to-low latitude magnetic connections extending through the corona speed up rotation at high latitudes and retard it at low latitudes.  相似文献   

5.
We report measurements of the sunspot rotation rate at high sunspot latitutdes for the years 1966–1968. Ten spots at ¦latitude¦ 28 deg were found in our Mees Solar Observatory H patrol records for this period that are suitable for such a study. On the average we find a sidereal rotation rate of 13.70 ± 0.07 deg day-1 at 31.05 ± 0.01 deg. This result is essentially the same as that obtained by Tang (1980) for the succeeding solar cycle, and significantly larger than Newton and Nunn's (1951) results for the 1934–1944 cycle. Taken together, the full set of measurements in this latitude regime yield a rotation rate in excellent agreement with the result =14°.377–2°.77 sin2, derived by Newton and Nunn from recurrent spots predominatly at lower latitudes throughout the six cycles from 1878–1944.Summer Research Assistant.  相似文献   

6.
The rotation rates obtained by tracing 124 polar crown filaments are presented in comparison with previous results. Higher filament rotation rate in polar regions was detected and discussed in terms of the various phenomena such as: the projection effect due to the height of measured tracers, the connection of polar filaments with the magnetic field patterns which show an increase of the rotation rate at high latitudes, rigid rotation of polar filaments which form pivot points, and eventual change of the differential rotation law during the cycle. However, when the height correction for an average height of 1% of the solar radius is applied, the filament rotation rate in polar regions decreases. Then the rotation law becomes: () = 14.45 – 0.11 sin2 – 3.69 sin4 (° day–1, sidereal).  相似文献   

7.
An autocorrelation of the direction of the large-scale photospheric magnetic field observed during 1959–1967 has yielded evidence that the field structure at some heliographic latitudes can display both differential rotation and rigid rotation properties.  相似文献   

8.
Erofeev  D.V.  Erofeeva  A.V. 《Solar physics》2000,191(2):281-292
We investigate a latitude–time distribution of polar faculae observed at Ussuriysk Observatory in years 1966–1986. The distribution is compared with the longitude-averaged (zonal) magnetic field of the Sun calculated from the data obtained at Mount Wilson Observatory in the years 1966–1976, and at Kitt Peak National Observatory during the period from 1976 to 1985. We found that slow, poleward-directed migration of the polar faculae zones occurring during the course of the solar cycle is not a continuous process, but it contains several episodes of appearance and fast poleward drift of new zones of polar faculae. At the rising phase of the solar cycle, new zones of polar faculae appear at latitudes as low as 40°, but the ones observed during the declining phase of the solar cycle originate at higher latitudes of 50–55°. Such episodes of appearance and fast migration of the polar faculae zones are associated with the poleward-directed streams of magnetic field originated at low latitudes. Moreover, we found some evidence for existence of an additional component of the polar faculae activity that reveals an equatorward migration during the course of the solar cycle. We also investigated a relationship between the number of polar faculae, n, and absolute magnetic flux z of the zonal mode of the solar magnetic field. We found that within the polar zones of the Sun, substantial correlation between temporal variations of n and z takes place both on the time scale of the solar cycle and on a shorter time scale of 2–4 years. The relationship between the number of polar faculae and magnetic flux may be approximated by a linear dependence n=0.12z (where z is expressed in 1021 Mx), except for time interval 1977 through 1980 for which the factor of proportionality is found to have a systematically larger value of 0.20.  相似文献   

9.
Daily observations of Doppler line shifts made with very low spatial resolution (3) with the Stanford magnetograph have been used to study the equatorial rotation rate, limb effect on the disk, and the mean meridonial circulation. The equatorial rotation rate was found to be approximately constant over the interval May 1976–January 1977 and to have the value 2.82 rad s–1 (1.96 km s–1). This average compares favorably with the results of Howard (1977) of 2.83 rad s–1 for the same time period. The RMS deviation of the daily measurements about the mean value was 1% of the rate (20 m s–1), much smaller than the fluctuations reported by Howard and Harvey (1970) of several per cent. These 1% fluctuations are uncorrelated from day-to-day and may be due to instrumental problems. The limb effect on the disk was studied in equatorial scans (after suppressing solar rotation). A redshift at the center of the disk relative to a position 0.60R from the center of 30 m s–1 was found for the line Fe i 5250 Å. Central meridian scans were used (after correcting for the limb effect defined in the equatorial scans) to search for the component of mean meridonial circulation symmetric across the equator. A signal is found consistent with a polewards flow of 20 m s–1 approximately constant over the latitude range 10–50°. Models of the solar differential rotation driven by an axisymmetric meridonial circulation and an anisotropic eddy viscosity (Kippenhahn, 1963; Cocke, 1967; Köhler, 1970) predict an equatorwards flow at the surface. However, giant cell convection models (Gilman, 1972, 1976, 1977) predict a mean polewards flow (at the surface). The poleward-directed meridonial flow is created as a by-product of the giant cell convection and tends to limit the differential rotation. The observation of a poleward-directed meridonial circulation lends strong support to the giant cell models over the anisotropic eddy viscosity models.Now at Kitt Peak National Observatory, Tucson, Ariz., U.S.A.  相似文献   

10.
Observations of the white light corona were made on over 900 days during the years 1964–67 at heights between 1.125 and 2.0 R with the K-coronameter at Mount Haleakala and Mauna Loa, Hawaii. The brightness distribution of the minimum corona was elliptical with average equatorial intensities three times the polar. Coronal features of the new cycle at 1.125 R occurred predominantly in the sunspot zones at 25–30° latitude and in a high latitude zone which migrated toward the North pole before solar maximum. The brightness of the inner corona doubled over this period and a close association is found between the average corona and 10.7-cm solar radio flux. Electron densities in the equatorial regions were nearly twice those of Van de Hulst's model corona, in agreement with the results of recent eclipse observations.At Hawaii Institute of Geophysics.  相似文献   

11.
Large-scale solar motions comprise differential rotation (with latitudinal, and perhaps radial gradients), axially symmetric meridional motions, and possible asymmetric motions (giant convective cells or Rossby-type waves or both). These motions must be basic in any satisfactory theory of the changing pattern of solar magnetic fields and of the 22-yr cycle. In the present paper available data are discussed and, as far as possible, evaluated and explained.Rotational measurements are based on the changing positions of discrete features such as sunspots, on Doppler shifts, on geophysical changes and on statistical evaluation of the motions of diffuse objects. The first mentioned, comprising faculae, sunspots, K-corona (to latitudes 45°) and filaments, show agreement better than 0.7 %. A new formula for surface rotation s , based on faculae and sunspot data, is s = 14.52 – 2.48 sin2 b – 2.51 sin6 b deg day–1, where b is latitude, and validity may extend to about 70°. Errors in Doppler shift measurements and statistical treatments are discussed. There is evidence of a much slower coronal rate at high latitudes, and of a slower sub-surface rate at lower latitudes.Ordered meridional motions have been revealed by statistical investigations of the positions of spot groups, of spots and of filaments. All these results seem explicable in terms of an oscillating hydro-magnetic circulation in each hemisphere. These have both 11-yr and 22-yr components, and these periods are provided by a general dipole field of about one gauss, together with a pair of toroidal fields centred at latitudes ±16° and of average strength of order 10 G.Evidence of large-scale (perhaps 3 × 105 km), irregular surface motions is provided by the distribution of surface magnetic flux, the motions of sunspots, and Doppler-shift observations; it is supported by Ward's theory of the equatorial acceleration. The possibility is suggested that these asymmetric motions also drive the oscillatory meridional motions.  相似文献   

12.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

13.
The distribution of monthly counts of grouped solar flares N f has been studied for the time period 1967–1985 and they have been compared to other solar activity index R z , F 2800, and F 3750 i.e. intensities of solar radio flux at 2800 MH z and 3750 MH z . Seasonal variations have been found in the monthly distribution of solar flares.We have also studied the variation of the correlation coefficient for every year between N F and R z for the time period 1967–1985. The distribution of monthly counts of grouped solar flares N f has also been compared to the number at high velocity solar-wind streamers for the same period.  相似文献   

14.
BRAJŠA  R.  RUŽDJAK  V.  VRŠNAK  B.  POHJOLAINEN  S.  URPO  S.  SCHROLL  A.  WÖHL  H. 《Solar physics》1997,171(1):1-34
The solar rotation rate obtained using the microwave Low-brightness-Temperature Regions (LTRs) as tracers in the heliographic range ± 55° from the years 1979–1980, 1981–1982, 1987–1988, and 1989–1991 varied from 3% to 4% in medium latitudes, and below 1% at the equator. Using H filaments as tracers at higher latitudes from the years 1979, 1980, 1982, 1984, and 1987, the solar rotation rate variation was between 2% and 8%. This represents an upper limit on the rotation rate variation during the solar activity cycle. Such changes could be caused by short-lived, large-scale velocity patterns on the solar surface. The Sun revealed a higher rotation rate on the average during the maxima of the solar activity cycles 21 and 22, i.e., in the periods 1979–1980 and 1989–1991, respectively, which differs from the rotation rates (lower on the average) in some years, 1981–1982 and 1987–1988, between the activity maximum and minimum (LTR data). Simultaneous comparison of rotation rates from LTRs and H filament tracings was possible in very limited time intervals and latitude bands only, and no systematic relationship was found, although the rotation rates determined by LTRs were mostly smaller than the rotation rates determined by H filaments. The errors obtained by applying different fitting procedures of the LTR data were analyzed, as well as the influence of the height correction. Finally, the north–south asymmetry in the rotation rate investigated by LTRs indicates that the southern solar hemisphere rotated slower in the periods under consideration, the difference being about 1%. The reliability of all obtained results is discussed and a comparison with other related studies was performed.  相似文献   

15.
Geomagnetic data for the year 1967 from seven Canadian observatories, spanning the subauroral, auroral and polar zones, have been analysed to investigate the characteristic variation of Pc5 period with several geophysical variables. Pulsations in the whole spectrum of Pc5 (period range 150–600 s) were found to occur at all of the observatories. Those with smaller periods occurred more frequently at lower latitudes while those with longer periods occurred more frequently at higher latitudes. Daily variation of the periods of Pc5 showed little change with seasons or with magnetic activity. Periods, in general, had two daily maxima which appeared at different local times in different zones. A predominant morning peak was noted at all stations except Baker Lake, where a mid-day maximum of the period was found. The Pc5 periods tended to increase with geomagnetic activity at lower latitude stations, and to decrease with activity at stations in the polar cap for low to moderateKp levels. At high activity levels these trends appeared to reverse, though results are less certain. In different seasons and for the whole year the periods increased almost linearly with latitude. However when similar analysis was done for individual hours of the day and for different magnetic activity groups, this linear relationship between period and geomagnetic latitude was not evident. Efforts to detect a 27-day recurrence tendency of Pc5 periods did not succeed.Contributions from the Earth Physics Branch No. 495.  相似文献   

16.
S. Latushko 《Solar physics》1996,166(2):261-266
A study is made of the rotation of large-scale magnetic fields using the synoptic maps from the Kitt Peak National Observatory for the time interval 1976–1985. The auto-correlation method and the mass-centers method of magnetic structures was applied to infer mean differential rotation profiles and rotation profiles separately for each magnetic field polarity. It has been found that in both hemispheres the leading polarity rotates faster than the following polarity at all latitudes by about 0.04° day–1. The maximum rotation rate of the leading polarity is reached at about 6° latitude. In the mean profile for both polarities, this brings about two angular velocity maxima at 6° latitudes in both hemispheres. Such a profile appears as to have a dimple on the equator.  相似文献   

17.
The principal polar-crown coronal helmet structures were selected from nearly three years (May, 1965–January, 1968) of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii. Six isolated and long-lived helmet systems were found at latitudes of 45° and above. Their developments are compared with underlying chromospheric and photospheric activity and a simple phenomenological model is presented showing that a coronal system is formed over an active region. Thereafter the center of gravity of the system gradually drifts poleward with the trailing unipolar magnetic region (UMR), and it becomes a high latitude coronal helmet, arched over a polar crown filament.By comparison of these coronal helmets with observations of the outer corona (to circa 4 R ) made at solar eclipse, lunar sunset, and with balloon and rocket-borne externally occulted corona-graphs, it appears that ground-based K-coronameter measurements to a distance of 1.5–2.0 R are sufficient to detect the coronal streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
The dependence of solar rotation on the size of the chromospheric tracers is considered. On the basis of an analysis of Ca ii K3 daily filtergrams taken in the period 8 May–14 August, 1972, chromospheric features can be divided into two classes according to their size. Features with size falling into the range 24 000–110 000 km can be identified with network elements, while those falling into the range 120 000–300 000 km with active regions, or brightness features of comparable size present at high latitudes. The rotation rate is determined separately for the two families of chromospheric features by means of a cross-correlation technique which directly yields the average daily displacement of tracers due to rotation. Before computing the cross-correlation functions, chromospheric brightness data have been filtered with appropriate bandpass and highpass filters for separating spatial periodicities whose wavelengths fall into the two ranges of size, characteristic of the network pattern and of the activity centers. A difference less than 1% of the rotation rate of the two families of chromospheric features has been found. This is an indication for a substantial corotation at chromospheric levels of different short-lived features, both related to solar activity and controlled by the convective supergranular motions.  相似文献   

19.
Measurements of the rotation rate of polar magnetic features during 1974–76 lead to a significantly slower rotation rate than that found earlier for polar faculae in 1951–54. Similarly, the rotation rate of these features is slower than the Doppler-determined rate at polar latitudes or the rotation rate of polar filaments. It is suggested that the strong latitude rotation gradient in the subsurface magnetic flux tubes which is implied by these results may presage a very active solar maximum for cycle 21.  相似文献   

20.
From high precision computer controlled tracings of bright Ca+-mottles we investigated differential rotation, meridional and random motions of these chromospheric fine structures. The equatorial angular velocity of the Ca+-mottles agrees well with that of sunspots (14°.50 per day, sidereal) and is 5 % higher than for the photosphere. The slowing down with increasing latitude is larger than for sunspots. Hence in higher latitudes Ca+-mottles rotate as fast as the photospheric plasma. A systematic meridional motion of about 0.1 km s–1 for latitudes around 10° was found. The Ca+-mottles show horizontal random motions due to the supergranular flow pattern with an rms velocity of about 0.15 km s–1. We finally investigated the correctness of the solar rotation elements i and derived by Carrington (1863).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号