首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Coronal magnetic fields   总被引:1,自引:0,他引:1  
The observational evidence on the strength of the coronal magnetic field above active regions is reviewed. Recent advances in observations and plasma theory are used to determine which data are the more reliable and to revise some earlier estimates of field strength. The results from the different techniques are found to be in general agreement, and the relation 279-01, 1.02 R/R 10 is consistent with all the data to within a factor of about 3.The National Center for Atmospheric Research is supported by the National Science Foundation.  相似文献   

2.
In the first part of this communication we briefly summarize the results of the first observation of linear polarization in the microwave emission above a solar active region obtained with the Westerbork Synthesis Radio Telescope, taking advantage of the very narrow bandwidths of a multi-channel spectral line receiver. The intensity of the Stokes parameterU, measured at several points close to the line of zero circular polarization, showed a clear sinusoidal trend as a function of 2, in accordance to what is expected from Faraday rotation (Alissandrakis and Chiuderi Drago, 1994). Combining the measured period of the Faraday rotation with the observed deplacement of the depolarization line with respect to the photospheric neutral line, the height above the photosphere of the depolarization point and the value of the electron density and the magnetic field at this point are computed. Although the calculations are done in the very simplified assumptions of a bipolar magnetic field and of a density following hydrostatic equilibrium, they represent the first estimate of the coronal magnetic field in an active region, far from sunspots.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

3.
The solar active region (AR) 7530 was observed at 6 cm on July 3 and 4, 1993 with the Westerbork Synthesis Radio Telescope, using a multi-channel receiver with very narrow bandwidth. We compare the radio data with Yohkoh SXT observations and with the magnetic field extrapolated from the Marshall vector magnetograms in the force-free and current-free approximations. The comparison with soft X-rays shows that, although a general agreement exists between the shape of the radio intensity map and the X-ray loops, the brightness temperature, T b, obtained using the parameters derived from the SXT is much lower than that observed. The comparison with the extrapolated photospheric fields shows instead that they account very well for the observed T b above the main sunspots, if gyroresonance emission is assumed. In the observation of July 4 an inversion and strong suppression of the circular polarization was clearly present above different portions of the AR, which indicates that particular relationships exist between the electron density and the magnetic field in the region where the corresponding lines of sight cross the field quasi-perpendicularly. The extrapolated magnetic field at a much higher level ( 1010 cm), satisfies the constraints required by the wave propagation theory all over the AR. However, a rather low electron density is derived.  相似文献   

4.
A noise storm center clearly associated to an active center has been followed from January 2 to January 8, 1969. The study of the mean distribution of continuum and of type 1 bursts has shown a global and systematic displacement interpreted in terms of the coronal magnetic structure. This structure is formed by field lines connecting the active center to a stable region of inverse polarity, characterized by the existence of a coronal condensation. These results show the possibility of using this method for the systematic study of coronal magnetic structures, the knowledge of which is vital as far as the problems of particle propagation in the corona and in the interplanetary medium are concerned.  相似文献   

5.
A moving Type IV burst, observed with the Culgoora radioheliograph on 1970 April 29, moved out to about 3 R and attained high circular polarization before fading. The appearance of the moving Type IV source suggests an isolated, self-contained, synchrotron emitting plasmoid. Magnetic field maps of the corona derived from photospheric observations indicate that the plasmoid moved almost radially outward from the flare region along open field lines. To explain the observed source structure and high unipolar polarization, we suggest that a ring of electric current was ejected from the low corona and guided by coronal magnetic field lines; the radio emission was synchrotron radiation generated by mildly-relativistic electrons trapped in the poloidal magnetic field of the ring current.Part of the research reported here was carried out while the author was at the Division of Radiophysics, C.S.I.R.O., Sydney, Australia.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The intensity and frequency spectrum of gyro-synchrotron emission from energetic solar electrons radiating in coronal magnetic fields are calculated. These calculations, based on a recent study of the generation of gyro-synchrotron emission in a magnetoactive plasma, are applied to a Type IV radio burst originating at a high altitude in the solar corona. It is shown that the observed frequency spectrum of the burst, which exhibits very sharp low and high frequency cutoffs, can be best understood in terms of gyro-synchrotron emission in an ionized medium and that from the observed frequency spectrum and the ambient coronal density it is possible to deduce both the magnetic field at the site of the emission and the range of electron energies responsible for the burst.NAS-NASA Post-Doctoral Resident Research Associate.Research supported by the National Research Foundation under grant GP-849.  相似文献   

7.
Fluctuations in the Galactic synchrotron emission can be traced by the angular power spectrum of radio maps at low multipoles. At frequencies below few GHz, large-scale anisotropies are mainly induced by magnetic field turbulence, since non-thermal electrons radiating at these frequencies are uniformly distributed over the scales of magnetic field inhomogeneities. By performing an analysis of five radio maps, we extract constraints on turbulence spectral index and halo scale. Results favour a power spectrum significantly flatter than for 3D Kolmogorov-like turbulence, and a thin halo. This can be interpreted as an indication supporting non-conventional models of propagation of cosmic-ray particles in the Galaxy, or as a suggestion of a spectral-index break in the observed magnetic turbulence power spectrum.  相似文献   

8.
An extremely complex outburst, part of which showed unsually rapid intensity fluctuations of a few second interval, was observed on 1970 November 5 with the 160 MHz interferometer of the Nobeyama Solar Radio Station. The pulsating source, which was stable in position and strongly circularly polarized ( 60 %), had an extension as large as 17 (7.5 × 105 km) in the east-west direction. The structure of the source remained unchanged while the source darkened and brightened repeatedly. The change of the source brightness occurred in a time shorter than a second.Two alternative mechanisms responsible for the pulsating phenomenon are suggested; (1) gyroresonance absorption of continuum radiation by a fast particle beam injected in a quasi-periodic manner into a large region of weak magnetic field, or (2) magnetohydrodynamic oscillation of the continuum source itself, which is intrinsically much smaller than observed. It is observed as a large source as a consequence of scattering of the emitted radiation in a region situated above the source.  相似文献   

9.
We have proposed a mechanism of arise of transient magnetic disturbances from solar flare explosion which can lead to understanding of observed pulsations of type IV radio emission with period of 0.3–3.0 s. According to the proposed mechanism the pulsation activity of the radio emission results from MHD waves accompanying the expanding diamagnetic plasma produced by the explosive flare material.  相似文献   

10.
A simple method of estimating the coronal magnetic field is suggested. It is based on the observational fact that the duration of the highly polarized part in type III bursts can be different, varying from a small fraction of the burst length to its total duration. We suggest that this difference is determined by the relation between the size of the region where only the ordinary wave can propagate and the size of the region where the burst is generated at a fixed frequency. The magnetic field is estimated at several tens of gauss in regions emitting highly polarized type III bursts at frequencies over 200 MHz. Density and magnetic field scales are estimated.  相似文献   

11.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

12.
J. P. Wild 《Solar physics》1969,9(2):260-264
A continuous record of the 80 MHz image and polarization of a type IV solar outburst has been made with the Culgoora radioheliograph from which the magnetic structure of the event can be directly inferred. The first (‘moving’) part of the event appears beyond the limb as an expanding magnetic arch along which three concentrated sources develop: one unpolarized source near the peak, attributed to synchrotron radiation; and two polarized sources of opposite polarity near the feet, attributed to plasma radiation. The radio-emitting arch appears to lie above an eruptive prominence seen in Hα. The second (‘stationary’) part is seen later as a separate highly polarized source on the disk above the projected position of the flare that had previously triggered the prominence activity.  相似文献   

13.
Microwave burst spectra are compared with the position, within the active region, of their associated flares observed in H. The magnetic fields predicted by Takakura's burst model (1972) are found to be in reasonable agreement with the fields expected at the flare locations.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
The radio azimuths for many kilometric type III bursts that originate near or behind the limb of the Sun are observed to drift far to the east or far to the west of the spacecraft-Sun line. It is shown that the behavior of the observed burst parameters for these events corresponds to the response of a spinning dipole antenna to halo-like sources of radiation around the Sun. Our results provide evidence for a previous suggestion that behind-the-limb type III events should appear as halo-like sources of radiation to an observer on the opposite side of the Sun, due to scattering of the radiation from the primary source back around the Sun.  相似文献   

15.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

16.
17.
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967–1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than 1021 maxwells flares will occur and for flux of 1023 maxwells the sum of the H flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.This work was supported in part by NASA Contract No. NAS2-7868 and in part by Company funds of The Aerospace Corporation.  相似文献   

18.
We present a summary of several studies of transient coronal phenomena based upon high spatial resolution radio imaging data along with Yohkoh SXT and HXT observations. In addition to normal flares the studies also involve such exotic events as active region transient brightenings (ARTB) and coronal jets and bright points. We provide evidence of nonthermal processes in flaring X-ray bright points from spatially resolved meter-wave data, existence and propagation of type II burst emitting electrons in coronal jets, radio signatures of ARTB's, and beaming of electrons producing microwave and hard X-rays. The implications of these observations are discussed.  相似文献   

19.
We report a measurement of intergalactic magnetic fields using combined data from Atmospheric Cherenkov Telescopes and Fermi Gamma-Ray Space Telescope, based on the spectral data alone. If blazars are assumed to produce both gamma rays and cosmic rays, the observed spectra are not sensitive to the intrinsic spectrum of the source, because, for a distant blazar, secondary photons produced along the line of sight dominate the signal. In this case, we set a limit 1 × 10−17 G < B < 3 × 10−14 G. If one excludes the cosmic-ray component, the 10−17 G lower limit remains, but the upper limit depends on the spectral properties of the source. We present the allowed ranges for a variety of model parameters.  相似文献   

20.
It is shown that coronal holes may be used as indicators to trace the location of the neutral line on the source surface in the corona. At the same time, coronal holes are shown to concentrate in regions of enhanced magnetic field at the source surface. This provides us with a simple method for predicting the interplanetary current sheet and sector structure which, in turn, determine the location of the proton complexes and the outflow regions of high-velocity streams. Rotation of coronal holes has been studied. Rather than being rigid, it displays the same reduced differentiallity as the rest of the corona. However, there are particular periods 2 or 3 years before the cycle minimum when the solid-body type of rotation is settled for both the coronal holes and the corona as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号