首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the overall sinkhole distributions and conducts hypothesis tests of sinkhole distributions and sinkhole formation using data stored in the Karst Feature Database (KFD) of Minnesota. Nearest neighbor analysis (NNA) was extended to include different orders of NNA, different scales of concentrated zones of sinkholes, and directions to the nearest sinkholes. The statistical results, along with the sinkhole density distribution, indicate that sinkholes tend to form in highly concentrated zones instead of scattered individuals. The pattern changes from clustered to random to regular as the scale of the analysis decreases from 10–100 km2 to 5–30 km2 to 2–10 km2. Hypotheses that may explain this phenomenon are: (1) areas in the highly concentrated zones of sinkholes have similar geologic and topographical settings that favor sinkhole formation; (2) existing sinkholes change the hydraulic gradient in the surrounding area and increase the solution and erosional processes that eventually form more new sinkholes.  相似文献   

2.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   

3.
Approximately 60 % of the 2,150,000 km2 area of Saudi Arabia is underlain by soluble sediments (carbonate and evaporite rock formations, salt diapirs, sabkha deposits). Despite its hyper-arid climate, a wide variety of recent sinkholes have been reported in numerous areas, involving significant property losses. Human activities, most notably groundwater extraction, have induced unstable conditions on pre-existing cavities. This work provides an overview of the sinkhole hazard in Saudi Arabia, a scarcely explored topic. It identifies the main karst formations and the distribution of the most problematic sinkhole areas, illustrated through several case studies covering the wide spectrum of subsidence mechanisms. Some of the main investigation methods are presented through selected examples, including remote sensing, trenching and geophysics. Based on the available data, the main causal factors are identified and further actions that should be undertaken to better assess and manage the risk are discussed.  相似文献   

4.
The morphological evolution of the karstic systems is associated with a set of physical and chemical processes, triggered by the dissolution of the rocks, related to percolation of groundwater and surface water, which consequently open underground voids and carve out peculiar forms of relief. Due to environmental and geotechnical aspects, this system is naturally more fragile and vulnerable than other natural systems and, therefore, has increasingly received the attention of the scientific community over the past decades. The objective of the study was to delimit zones with varying degrees of susceptibility for collapses and subsidence of sinkholes in the municipality of Iraquara, Chapada Diamantina (BA), Brazil, and to understand their geological and morphological determinant factors. Geological data, karst phenomenon map, and visual analysis in the field were used to categorize zones with different types of susceptibilities to the nucleation of new sinkholes based on a Hazard Index. This index was defined from the sum of geological hazard factors, lineament density, and sinkhole density. The areas that presented the highest susceptibility for terrain collapse and subsidence corresponded to regions where carbonate rocks outcrop, with high density of photolineaments and 2.62 sinkholes/km2. Processes associated with terrain collapse and subsidence in karst areas consisted of a combination of various factors, hindering precise predictions. However, zones of different types of susceptibilities to terrain collapse and subsidence can be delimited when the relationships between these processes and their factors are understood. The Hazard Index proposed does not provide quantitative values for the probability of hazard susceptibility, but rather indicates areas that are more susceptible to terrain subsidence and collapse.  相似文献   

5.
A preliminary sinkhole susceptibility analysis has been carried out in a stretch 50 km2 in area of the Ebro valley alluvial evaporite karst (NE Spain). A spatial database consisting of a sinkhole layer and 27 thematic layers related to causal factors was constructed and implemented in a GIS. Three types of sinkholes were differentiated on the basis of their markedly different morphometry and geomorphic distribution: large subsidence depressions (24), large collapse sinkholes (23), and small cover-collapse sinkholes (447). The susceptibility models were produced analysing the statistical relationships between the mapped sinkholes and a set of conditioning factors using the Favourability Functions approach. The statistical analyses indicate that the best models are obtained with 6 conditioning factors out of the 27 available ones and that different factors and processes are involved in the generation of each type of sinkhole. The validation of two models by means of a random-split strategy shows that reasonably good predictions on the spatial distribution of future dolines may be produced with this approach; around 75% of the sinkholes of the validation sample occur on the 10% of the pixels with the highest susceptibility and about 45% of the area can be considered as safe.  相似文献   

6.
Geophysical methods—seismic refraction (SRFR), electrical resistivity tomography (ERT), and microgravity—were applied to the Dead Sea (DS) sinkhole problem in the Ein Gedi area at the earlier stage of the sinkhole development (1998–2002). They allowed determining the sinkhole formation mechanism and localizing the sinkhole hazardous zones. The SRFR method permitted to delineate the underground edge of a salt layer at the depth of 50 m. The salt edge was shaped like the sinkhole line on the surface. It was concluded that the sinkhole development is linked to the salt edge. Geoelectrical quasi-3D mapping based on the ERT technique detected large resistivity anomalies with 250–300 m2 diameter and 25–35 m deep. The Ein Gedi area has been also mapped by the use of Microgravity method. The residual Bouguer gravity anomaly map shows negative anomalies arranged along the edge of the salt layer. Those gravity anomalies overall are very similar in plan to the resistivity distribution in this area. The results of forward modeling indicate that both high resistivity and residual gravity anomalies are associated with a subsurface decompaction of the soil mass and deep cavity at the sinkhole site. Following monitoring of the sinkhole development carried out by the Geological Survey of Israel confirmed our suggestions. The drilling of numerous boreholes verified the location of the salt edge. Geographical Information System (GIS) database testifies that during 2003–2009 new sinkholes are continuing to develop along the salt edge within a narrow 50–100 m wide strip oriented approximately in north–south direction (slightly parallel to the shoreline). No promotion in west–east direction (perpendicularly to the DS shoreline) was observed in Israel. Collapse of sinkholes and their clustering have been occurred within the area of high resistivity anomaly and negative residual gravity anomaly. Similar studies carried out at the Ghor Al-Haditha area (Jordan) have shown that sinkholes there are also arranged along the winding line conforming to the salt edge. In this area sinkholes are slowly moved to the Dead Sea direction. Results of geophysical studies in numerous DS sites indicate similar sinkhole development. It allowed generating of the sinkhole formation model based on ancient (10,000–11,000-year old) salt belt girding the Dead Sea along its shores  相似文献   

7.
Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

8.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   

9.
Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.  相似文献   

10.
Formation mechanism of large sinkhole collapses in Laibin,Guangxi, China   总被引:1,自引:1,他引:0  
On June 3, 2010, a series of karst sinkholes occurred at Jili village surrounded by Gui-Bei highway, Wu-Ping highway and Nan-Liu High-Speed Railway in Laibin, Guangxi, China. The straight-line distances from an large sinkhole pit, 85 m in diameter and 38 m in depth, to the above mainlines are 200, 600 and 500 m, respectively. Several investigation methods including geophysical technology, borehole and well drilling, groundwater elevation survey and hydrochemistry analysis of groundwater were used to study the formation mechanisms of these sinkholes. Based on the results, the spatial distribution of the Jili underground river was confirmed with a strike of SN along the middle Carboniferous limestone bedrock and the Quaternary deposits controlled the sinkhole formation. In addition, both historical sinkhole events and analysis of the groundwater–air pressure monitoring data installed in the underlying karst conduit system indicate that sinkholes in this area are more likely induced by extreme weather conditions within typical karst geological settings. Extreme weather conditions in the study area before the sinkhole collapses consisted of a year-long drought followed by continuous precipitation with a daily maximum precipitation of 442 mm between May 31 and June 1, 2010. Typical geological conditions include the Jili underground river overlain by the Quaternary overburden with thick clayey rubble. Especially in the recharge zone of the underground river, a stabilized shallow water table was formed in response to the extreme rainstorm because of the presence of the thick clayey rubble. When the underground conduit was flooded through the cave entrance on the surface, air blasting may have caused the cave roof collapse followed by formation of soil cavities and surface collapses. Borehole monitoring results of the groundwater–air pressure monitoring show that the potential karst sinkhole can pose threats to Shanbei village, the High-Speed Railway and the Wu-Ping highway. Local government needs to be aware of any early indicators of this geohazard so that devastating sinkholes can be prevented in the future. The results also suggest that groundwater–air pressure monitoring data collected both the Quaternary deposits and the bedrock karst system provide useful indicators for potential sinkhole collapses in similar karst areas where sinkholes usually occur during rainy season or karst groundwater level is always under the rockhead.  相似文献   

11.
Beljanica Mountain in eastern Serbia is a part of the Carpathian Balkan arch (northern Alpine branch). It covers an area of about 300 km2 and consists mostly of Jurassic and Cretaceous limestones. Numerous surface karst features, long caves and several large karstic springs located in Beljanica’s piedmont along the contact of karstic and non-karstic rocks are all indicators of an intense karstification. Currently, the large karstic water reserves of Beljanica Mountain are not properly utilized because of their distance from main consumers, the objection by national water managers that the springs lack a stable and sufficient discharge particularly during recession periods. Due to its unpolluted and high quality water, the area is a great prospect for future water supply, and provides an opportunity for artificial regulation and for the design and implementation of specific tapping structures. This paper includes an analysis of the created 3D ArcGIS model of karst interior and its correlation with historical and newly collected data of spring discharges and groundwater physico-chemical characteristics. The results of karst aquifer monitoring (both quantitative and qualitative) are linked with the results of extensive field geological and speleological survey of the upper non-saturated part of the karst (such as sinkholes, pits and caves) and with the investigation of the permanently saturated deeper part of the aquifer (including the diving methods). The model of karst interior is based on the data from the 69 caves, 15 sinks and 1,682 dolines (sinkholes) surveyed. The total length of the karst channels network, calculated using the GIS model and presented in a 3D environment, is 647 km. The catchment areas of five major springs that drain the areas are estimated to range from only 7 km2 (Malo Vrelo Spring) to 124 km2 (Vrelo Mlave Spring). The groundwater exploitable reserves of Beljanica karst aquifer are estimated to be over 4 m3/s. The waters are low mineralized, unpolluted and have a great potential for water supply.  相似文献   

12.
More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.  相似文献   

13.
Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

14.
Sinkholes usually have a higher probability of occurrence and a greater genetic diversity in evaporite terrains than in carbonate karst areas. This is because evaporites have a higher solubility and, commonly, a lower mechanical strength. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas. To deal with these hazards, a phased approach is needed for sinkhole identification, investigation, prediction, and mitigation. Identification techniques include field surveys and geomorphological mapping combined with accounts from local people and historical sources. Detailed sinkhole maps can be constructed from sequential historical maps, recent topographical maps, and digital elevation models (DEMs) complemented with building-damage surveying, remote sensing, and high-resolution geodetic surveys. On a more detailed level, information from exposed paleosubsidence features (paleokarst), speleological explorations, geophysical investigations, trenching, dating techniques, and boreholes may help in investigating dissolution and subsidence features. Information on the hydrogeological pathways including caves, springs, and swallow holes are particularly important especially when corroborated by tracer tests. These diverse data sources make a valuable database—the karst inventory. From this dataset, sinkhole susceptibility zonations (relative probability) may be produced based on the spatial distribution of the features and good knowledge of the local geology. Sinkhole distribution can be investigated by spatial distribution analysis techniques including studies of preferential elongation, alignment, and nearest neighbor analysis. More objective susceptibility models may be obtained by analyzing the statistical relationships between the known sinkholes and the conditioning factors. Chronological information on sinkhole formation is required to estimate the probability of occurrence of sinkholes (number of sinkholes/km2 year). Such spatial and temporal predictions, frequently derived from limited records and based on the assumption that past sinkhole activity may be extrapolated to the future, are non-corroborated hypotheses. Validation methods allow us to assess the predictive capability of the susceptibility maps and to transform them into probability maps. Avoiding the most hazardous areas by preventive planning is the safest strategy for development in sinkhole-prone areas. Corrective measures could be applied to reduce the dissolution activity and subsidence processes. A more practical solution for safe development is to reduce the vulnerability of the structures by using subsidence-proof designs.  相似文献   

15.
Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.  相似文献   

16.
Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. δ18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration.  相似文献   

17.
Karst aquifers are often protected by a thin mantle of unconsolidated sediment. Soil pipes and sinkholes may breach this natural protective barrier and open pathways for contaminants to quickly reach bedrock aquifers. Geophysical surveys offer a quick and noninvasive way to identify these features; such surveys may also be sequenced to reveal increasing detail in critical areas. At a study site in east-central Illinois, electromagnetic (EM) surveys mapped high conductivity anomalies over filled sinkholes and soil pipes that penetrated the unconsolidated cover. Two-dimensional inverted resistivity sections, made over these anomalies, depict filled sinkholes and soil pipes as conductive zones above deeply weathered bedrock fractures. Borings verified the geophysical models and suggest high conductivities associated with the filled sinkholes are the result of enhanced moisture near active soil pipes. EM surveys also identified conductive zones in the overburden above a probable bedrock fracture linking sinkhole areas 0.5 km apart. Resistivity and EM methods, used in a phased and sequential manner, thus proved useful in mapping filled sinkholes and in delineating the vertical and lateral connections between soil pipes and hydraulically active bedrock fractures.  相似文献   

18.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

19.
In the valley of the Ebro River to the southeast of the city of Zaragoza (NE Spain), the dissolution of evaporite sediments (gypsum, halite and Na-sulphates) which underlie alluvial deposits gives rise to numerous sinkholes. These sinkholes are a potential hazard to human safety, particularly where they develop in a catastrophic way. Even slow-developing sinkholes are problematic, as they damage urban and agricultural infrastructure, necessitating costly repairs and vigilant maintenance. To assist in developing avoidance strategies for these hazards, the factors controlling sinkhole occurrence have been assessed using geomorphological maps produced from aerial photographs for 1956 and 1981. Important controls on sinkhole development are found to include underlying geological structure (manifest in preferred orientations of sinkholes on the azimuths N130-150E and N30-40E), and the presence of glauberite in the groundwater flow path, which apparently promotes accelerated gypsum dissolution. Perhaps surprisingly, alluvium thickness does not appear to significantly correlate with the density of sinkholes on the floodplain in this area. The maps for 1956 and 1981 reveal that both human activity and natural processes can serve to obscure the true density of sinkhole development. For instance, a large number of sinkholes which were conspicuous in 1956 have since been back-filled by farmers. In the most fluvially active zone of the Ebro valley (the meander belt), the relatively low density of sinkholes compared with adjoining zones suggests that subsidence is being masked by morpho-sedimentary dynamic processes (aggradation and erosion). Careful geomorphological mapping for different time periods yields a much more accurate impression of the frequency of sinkhole development than would be gained from surveying currently visible sinkholes in the area of interest.  相似文献   

20.
We apply the logic of clinical epidemiological studies to quantify the accuracy of mapping sinkholes by ALSM in the 750 km2 Pinellas County. By such studies, a new diagnostic procedure is tested by comparing the diagnoses in a clinical trial to diagnoses on the same patients from a more reliable, but more elaborate and expensive procedure (“gold standard” in epidemiological context). A relatively undeveloped, 65 km2 focus area where we have aerial photographs that are effectively contemporaneous with the ALSM flights serves as the “clinical trial”. The xy-locations in the focus area are the “patients” in the trial. The “diagnostic test” for having “sinkhole disease” is inclusion in a database of sinkhole polygons delimited by ALSM contours (“ALSM-alone”), as detailed in Part 1. The standard of comparison (“gold standard” would be an overstatement in the absence of geophysical testing) is inclusion in a database of sinkhole outlines derived by best judgment of conjunctive interpretation of ALSM and aerial photography. GIS intersections that indicate the sensitivity and specificity of the test (ALSM-alone) are 43 and 98.3%, respectively, and, in the focus area where the prevalence of “sinkhole disease” is 4.7%, the positive and negative predictive values are 55.5 and 97.2%, respectively. Over much of the rest of the county, where only the test can be applied, the prevalence of sinkholes is sufficiently small that it cannot be determined to be any different from zero given the paucity of interpreted sinkholes (positive diagnoses) and the low specificity of the test method. The conclusion, therefore, is that contemporaneous aerial photography is essential to compile an ALSM-derived database that aims to state that the given xy-points lay inside or outside of topographic depressions in the covered karst of west-central Florida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号