首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
A model of \(\hbox {CO}_{2}\) atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as \(\hbox {CO}_{2}\) concentrations at the Norunda research station located inside a mixed pine–spruce forest. We present the results of simulations of wind-speed profiles and \(\hbox {CO}_{2}\) concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323–351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated \(\hbox {CO}_{2}\) concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of \(^{14}\hbox {CO}_{2}\) is presented and discussed.  相似文献   

2.
We investigate the effects of an isolated meso-\(\gamma \)-scale surface heterogeneity for roughness and albedo on the atmospheric boundary-layer (ABL) height, with a case study at a semi-arid forest surrounded by sparse shrubland (forest area: \(28~\text{ km }^2\), forest length in the main wind direction: 7 km). Doppler lidar and ceilometer measurements at this semi-arid forest show an increase in the ABL height over the forest compared with the shrubland on four out of eight days. The differences in the ABL height between shrubland and forest are explained for all days with a model that assumes a linear growth of the internal boundary layer of the forest through the convective ABL upwind of the forest followed by a square-root growth into the stable free atmosphere. For the environmental conditions that existed during our measurements, the increase in ABL height due to large sensible heat fluxes from the forest (\(600~\text {W~m}^{-2}\) in summer) is subdued by stable stratification in the free atmosphere above the ABL, or reduced by high wind speeds in the mixed layer.  相似文献   

3.
Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island during the period from July to October.Results from sur-face meteorological observations show that the diurnal cycle of rainfall differs greatly between the eastern and western coasts of the island.Rainfall on the western coast of the island is frequent in the afternoon and evening,whereas almost all rainfall on the eastern coast occurs in the morning.Meanwhile,the Global Positioning System (GPS)-derived precipitable water (PW) on the eastern coast shows a substantial decrease in moisture in the af-ternoon and evening.Numerical experiments with a mesoscale model reveal that gravity waves driven by di-urnal heating of the elevated land surface of the moun-tains on Sulawesi Island,which lies approximately 300 kilometers to the east of Kalimantan Island,significantly affect the diurnal cycle of rainfall over southeast Kali-mantan Island.  相似文献   

4.
Ambient mixing ratios of NO, NO2, and O3 were determined together with the photolysis frequency of NO2, JNO2, at a rural, agricultural site in Germany. The data were collected during the POPCORN-campaign from August 1 to August 24, 1994, in a maize field 6 m above ground. The medians of the NO, NO2, and O3 mixing ratios between 10:00 and 14:00 UT were 0.25, 1.09, and 45 ppbv, respectively. The corresponding median of JNO2 was 6.0 · 10–3 s–1. NOx = NO + NO2 showed a strong diurnal variation with maximum mixing ratios at night, suggestive of a strong local surface source of NO, probably by microbial activity in the soil. The estimated average emission rate was 40 ng(N) m–2 s–1 of NOx, the major part of it probably in the form of NO. The available measurements allowed the estimation of the local NOx budget. At night the budget is almost closed and the measured NOx mixing ratios can be explained by the local source, local dry deposition of NO2, formation of NO3 and N2O5, and vertical exchange of air across the nocturnal inversion. During day-time, the local surface source of NO is not sufficient to explain the measured mixing ratios, and horizontal advection of NOx to the site must be included. The NO2/NO ratio during the morning und late afternoon is lower than predicted from the photostationary state owing to the local NO surface source, but is regulary higher during the hours around noon. For noon, August 10, 1994, the NO2/NO ratio was used to derive the momentary lower limit for the concentration of the peroxy-radicals of 2.2 · 109 cm–3 (86 pptv).  相似文献   

5.
大气中CO_2含量升高引起的气候变化是目前人们十分关注的问题,地球变暖是不少科学家的共同看法.本文根据赵宗慈估算的CO_2含量增加1倍时对我国气候的可能影响,分析了这种变化对农业热量资源及农业生产的可能影响.结果表明:积温将增加无霜期延长,种植界线向北推移,对我国粮食产量的影响区域间差异较大,三北地区为增产趋势,华南为减产趋势.  相似文献   

6.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

7.
CO2 in the rural atmosphere is related to respiration–photosynthesis processes, although the evolution of the low atmosphere is also a determinant factor. CO2 concentrations were measured at surface and meteorological variables obtained from a radio acoustic sounding system sodar at a flat rural site during a 3-year campaign. Yearly and daily cycles of CO2 were described. Maxima were observed in spring and autumn during the night. Wind speed and thermal structure of the lower atmosphere were analysed. Low level jets were observed during the night, their core proving lower in summer. Surface inversions observed with low winds reached up to 100 m. The turbulence layer which developed during the day extended up to 300–400 m and was capped by a stable layer. Median vertical wind speed reached 1 m s?1 in super-adiabatic conditions in summer. Determination of decoupled low level jets proved difficult with the device used and corresponding concentrations were slightly higher than medians calculated with all the observations. The bulk Richardson number was calculated in the lower atmosphere and four intervals were considered: drainage, transitional, shear flows and unstable conditions. Median CO2 concentrations were split according to these intervals. Higher values corresponded to drainage flow, which was associated to more stable conditions being less frequent and lower values to shear flow and unstable conditions, revealing a satisfactory link between the bulk Richardson number as a turbulence indicator in the low atmosphere and CO2 surface concentrations.  相似文献   

8.
The Dalton Minimum (1790–1830) was a period with reduced solar irradiance and strong volcanic eruptions. Additionally, the atmospheric CO2 concentrations started to rise from the background level of previous centuries. In this period most empirical climate reconstructions indicate a minimum in global or hemispheric temperatures. Here, we analyse several simulations starting in 1755 with the coupled atmosphere-ocean model ECHO-G driven by different forcing combinations to investigate which external forcing could have contributed most strongly to the reduced temperatures during the Dalton Minimum. Results indicate that on global and hemispheric scales, the volcanic forcing is largely responsible for the temperature drop in this period, especially during its second half, whereas changes in solar forcing and the increasing atmospheric CO2 concentrations were of minor importance. At regional scales, especially the extratropical, the impact of volcanic forcing is much less discernible due to the large regional variability, a finding that agrees with empirical temperature reconstructions.  相似文献   

9.
An investigation is made of the possible impacts of a climatic change (induced by a doubling of atmospheric carbon dioxide concentration) on the European agricultural sector. Two general circulation models have been used to develop climatic change scenarios for the European study area. From the scenarios, information was obtained concerning the possible behavior of temperature, precipitation, solar radiation, and relative humidity in the altered climatic state. This meteorological information was then employed in two separate crop-weather models - an empirical/statistical model (for winter wheat) and a simple simulation model (for biomass potential). This type of approach represents a considerable departure from that employed by previous large-scale climate impact studies. Both the seasonal and regional components of a possible climatic change are incorporated directly in the two crop-weather models. The results of this investigation demonstrate that a simple crop-weather simulation model may be more suitable for the purposes of agricultural impact analysis than the linear regression models frequently used in such studies. In order for such an impact analysis to be accepted as a valid scientific experiment, a full presentation of the underlying assumptions and uncertainties is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号