首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented. In this model, the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations. The time evolution of the surface sensible heat flux is modelled based on fitting functions of actual measurements from the LITFASS-2003 field campaign. These fitting functions carry an amplitude and a time scale. With this approach, the sensible heat flux can be estimated without having to solve the entire surface energy balance. The period of interest covers two characteristic transition sub-periods involved in the decay of convective boundary-layer turbulence. The first sub-period is the afternoon transition, when the sensible heat flux starts to decrease in response to the reduction in solar radiation. It is typically associated with a decay rate of TKE of approximately t −2 (t is time following the start of the decay) after several convective eddy turnover times. The early evening transition is the second sub-period, typically just before sunset when the surface sensible heat flux becomes negative. This sub-period is characterized by an abrupt decay in TKE associated with the rapid collapse of turbulence. Overall, the results presented show a significant improvement of the modelled TKE decay when compared to the often applied assumption of a sensible heat flux decreasing instantaneously or with a very short forcing time scale. In addition, for atmospheric modelling studies, it is suggested that the afternoon and early evening decay of sensible heat flux be modelled as a complementary error function.  相似文献   

2.
We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today??s numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.  相似文献   

3.
Large-eddy simulations (LESs) are employed to investigate the turbulence characteristics in the shear-free convective boundary layer (CBL) driven by heterogeneous surface heating. The patterns of surface heating are arranged as a chessboard with two different surface heat fluxes in the neighbouring patches, and the heterogeneity scale Λ in four different cases is taken as 1.2, 2.5, 5.0 and 10.0 km, respectively. The results are compared with those for the homogeneous case. The impact of the heterogeneity scale on the domain-averaged CBL characteristics, such as the profiles of the potential temperature and the heat flux, is not significant. However, different turbulence characteristics are induced by different heterogeneous surface heating. The greatest turbulent kinetic energy (TKE) is produced in the case with the largest heterogeneity scale, whilst the TKE in the other heterogeneous cases is close to that for the homogeneous case. This result indicates that the TKE is not enhanced unless the scale of the heterogeneous surface heating is large enough. The potential temperature variance is enhanced more significantly by a larger surface heterogeneity scale. But this effect diminishes with increasing CBL height, which implies that the turbulent eddy structures are changed during the CBL development. Analyses show that there are two types of organized turbulent eddies: one relates to the thermal circulations induced by the heterogeneous surface heating, whilst the other identifies with the inherent turbulent eddies (large eddies) induced by the free convection. At the early stage of the CBL development, the dominant scale of the organized turbulent eddies is controlled by the scale of the surface heterogeneity. With time increasing, the original pattern breaks up, and the vertical velocity eventually displays horizontal structures similar to those for the homogeneous heating case. It is found that after this transition, the values of λ/z i (λ is the dominant horizontal scale of the turbulent eddies, z i is the boundary-layer height) ≈1.6, which is just the aspect ratio of large eddies in the CBL.  相似文献   

4.
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.  相似文献   

5.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

6.
非均匀对流边界层的地转强迫流动和动量输送   总被引:1,自引:1,他引:1       下载免费PDF全文
蔡旭晖  陈家宜 《大气科学》2003,27(3):381-388
用大涡模拟方法研究地转强迫下的对流边界层流动和地表热力非均匀性影响.模拟重现了典型对流边界层的平均风廓线和动量通量垂直分布.地表热力非均匀性对区域平均风速和动量通量分布无明显影响,但边界层内的局地流动性状和湍流动量输送情况有系统性的改变.下风较热区近地面风速增强而高空流动受到阻塞,上风较冷区之上情况则正好相反.对应于平均流动场的畸变,地表较热区之上边界层大部可以出现动量向上输送的情况,较冷区成为大气动量下传的主要通道.地面应力在较热区增强、较冷区减弱的趋势明显.  相似文献   

7.
A major factor that influences the diurnal variation of turbulent kinetic energy (TKE) is the sensible heat flux at the surface. Here, the TKE variations are analysed during the morning transition phase because subsequent to the neutral or stable stratification during the night, peaks of concentration of scalars develop. The characteristics of the TKE during the growth phase of convection are analysed with the help of two analytical models. For this purpose, a three-dimensional spectral model of the growth of convection, starting from a neutral layer, and other formulations of micrometeorological parameters such as the convective and neutral spectra, velocity variance and dissipation rates are utilised. The peak values in the TKE spectra in the lower, middle and upper levels of the convective boundary layer showed a migration to higher wavelengths as the convection increased with time. The TKE evolutions generated by the analytical models agree fairly well with the results of large-eddy simulation for three vertical levels.  相似文献   

8.
Surface energy balance measurements over a banana plantation in South China   总被引:2,自引:1,他引:1  
The land surface energy exchange depends highly on the surface properties. Little is known of the energy balance over a typical banana plantation of humid tropics. In this study, we examine the characteristics of surface energy exchange over a typical banana field in South China during the period of May 2010 to April 2011 by using the eddy covariance and micrometeorological tower. The results showed that the diurnal and seasonal variations in surface latent heat flux were larger compared with those over the nearby grassland. The dominant energy partitioning varies with season. The latent heat flux was the main consumer of net radiation in summer, whereas the sensible heat flux was the main consumer in winter. The increasing cloud coverage and rain appear to control the surface energy balance with the development of the monsoon. Due to increased afternoon convective cloud systems in the monsoon active period, downward shortwave radiation was dramatically diminished around 14:00?pm. The annual mean Bowen ratio was 0.69, which fell within the range of other vegetated surfaces. The observed surface energy components were not closed, and the ratio of turbulent fluxes to the available energy was about 77 % in October–January and about 85 % in the other months after considering soil heat and air heat storage.  相似文献   

9.
Variability of Surface Sensible Heat Flux over Northwest China   总被引:2,自引:0,他引:2       下载免费PDF全文
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.  相似文献   

10.
An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.  相似文献   

11.
Observations of surface-layer turbulence and turbulent fluxes were made over a desert in northwestern China as a part of HEIFE (HEIhe river Field Experiment). These show that the normalized variations of the vertical wind component and of the air temperature obey Monin-Obukhov similarity well, especially in free convective conditions. However, the variations of specific humidity do not obey Monin-Obukhov similarity.Mean bulk transfer coefficients of sensible heat and momentum flux are obtained as functions of stability over a wide stability range from the observed data of turbulent fluxes and mast profiles. However, the bulk transfer coefficient for water vapor could not be obtained because of the large scatter of the data. In free convective conditions, the sensible heat flux was found to be approximately proportional to the 1.4 power of temperature difference between the surface and 20m. The bulk transfer coefficient of sensible heat is also obtained as a function of the bulk Richardson number for practical convenience.  相似文献   

12.
Using the tropical rainfall measuring mission (TRMM) Precipitation Radar (PR) observations combined with the surface rain gauge data during 1998–2006, the robust diurnal features of summer stratiform and convective precipitation over the southern contiguous China are revealed by exploring the diurnal variations of rain rate and precipitation profile. The precipitation over the southern contiguous China exhibits two distinguishing diurnal phases: late-night (2200–0600 LST) and late-afternoon (1400–2200 LST), dependent on the location, precipitation type and duration time. Generally, the maximum rain rate and the highest profile of stratiform precipitation occur in the late-afternoon (late-night) over the southeastern (southwestern) China, while most of the stratiform short-duration rain rate tends to present late-afternoon peaks over the southern China. For convective precipitation, the maximum rain rate and the highest profile occur in the late-afternoon over most of the southern contiguous China, while the convective long-duration rain rate exhibits late-night peaks over the southwestern China. Without regional dependence, the convective precipitation exhibits much larger amplitude of diurnal variations in both near surface rain rate and vertical extension compared with stratiform precipitation and the convective rain top rises most rapidly between noon and afternoon. However, there are two distinctive sub-regions. The diurnal phases of precipitation there are very weakly dependent on precipitation type and duration time. Over the eastern periphery of the Tibetan Plateau, the maximum rain rate and the highest profile of either convective or stratiform precipitation occur in the late-night. Over the southeastern coastal regions, both the near surface rain rate and rain top of convective and stratiform precipitation peak in the late-afternoon.  相似文献   

13.
The entrainment flux ratio A e and the inversion layer (IL) thickness are two key parameters in a mixed layer model. A e is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of A e is derived from the TKE budget in the firstorder model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness. The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized A e and IL thickness agree well with the LES outputs.  相似文献   

14.
This study explores how the Caribbean mean diurnal cycle is represented in observed, reanalyzed, and general circulation model data of the CMIP3 generation, with a focus on the central Antilles Islands (18–21° N, 80–66° W). Their trade wind climate, high solar forcing, and eastward decrease in size challenge dataset ability to represent a diurnal cycle of sufficient amplitude and correct phase. The mean difference between maximum and minimum temperature (ΔT) provides a useful metric, and values of 5–12°C are observed at stations around the Caribbean basin. The ΔT in various reanalyses and CMIP3 models generally yield correct values over South America, but few exhibit elevated ΔT over the central Antilles Islands. NCEP2 and ECMWF reanalyses differ in their representation despite similar resolution, the latter reflecting elevated ΔT. Only one of the four CMIP3 models evaluated correctly simulates Antilles ΔT, but does so with a dry bias. An intercomparison of mean diurnal rainfall in the Antilles is conducted. According to satellite and high-resolution reanalysis, the rain rate doubles in the afternoon. However NCEP2/ECMWF reanalysis and CMIP3 models yield an amplitude about half the observed and exhibit a nocturnal peak typical of marine climates. The reason for the variety of outcomes is related to model parameterizations that translate surface fluxes to boundary layer responses, and to horizontal resolution that affects the representation of sea breeze confluence over large islands.  相似文献   

15.
Summary The magnitude and diurnal change of turbulent bulk drag coefficients over land have been analysed using mean velocity and temperature gradient data of the planetary boundary layer. The turbulent drag coefficients can be about an order of magnitude larger over the rough land surface than over the sea surface. We computed these coefficients by the same method for three typical underlying surfaces represented by urban, grassland and Gobi desert. The results show that there are significant differences in the turbulent transfer among the three typical underlying surfaces.With 6 Figures  相似文献   

16.
白洋淀水陆不均匀地区能量平衡特征分析   总被引:5,自引:1,他引:4  
刘熙明  胡非  姜金华 《大气科学》2008,32(6):1411-1418
应用2005年9月在河北白洋淀地区进行的大气边界层综合观测实验资料, 对水陆不均匀地表条件下的白洋淀地区陆地的能量平衡特征进行了分析。结果表明: (1) 该地区存在能量不闭合现象。涡动相关法得到的感热、 潜热之和仅为有效能的75%, 其中涡动相关法得到的潜热通量为Bowen比法得到的潜热通量的70%, 而涡动相关法得到的感热通量为Bowen比法得到的感热通量的77% 。 (2) 地表潜热通量和感热通量随着净辐射的变化而变化。但潜热通量明显比感热通量大, 净辐射主要消耗于地表的水汽蒸发。 (3) 该地区白天的Bowen比平均在-0.4~0.4之间, 总体平均为0.131。受天气条件影响较大, 有明显的日变化, 午后15:00以后近地面层会出现逆温, Bowen比变为负值。 (4) 能量闭合程度有一定的日变化, 随着太阳高度角的增大而增大。  相似文献   

17.
18.
A TKE-dissipation model for the atmospheric boundary layer   总被引:1,自引:0,他引:1  
The dissipation, , of turbulent kinetic energy (TKE) is a key parameter in atmospheric boundary-layer (ABL) models. Besides being a sink for momentum, it is often used together with the TKE to define an internal turbulence time scale for closure relations. A prognostic formulation for the dissipation of TKE is formulated, based on isotropic tensor modeling methods. The formulation is coupled to a level 2.5 second-order closure model and evaluated against measurements taken in horizontally homogeneous conditions, as well as against a tailored length-scale formulation. A formulation suitable for convective as well as neutral and stable ABLs is suggested.On leave from Department of Meteorology, Uppsala University, P.O. Box 516, S-751 20 Uppsala, Sweden.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

20.
Summary The development of a convective boundary layer over the Antarctic Plateau is documented by a Doppler minisodar data-set recorded during a 10 day campaign in January 1997. The vertical velocities associated with thermals do not exceed 1 m/s, while the depth of the convective layer, usually less than 200 m, never surpasses 300 m. Measurements of momentum flux, sensible heat flux, wind speed and radiation budget show characteristics that are typical of a convective boundary layer evolution. The diurnal behaviour of absolute humidity, however, exhibits features that are not expected, e.g. anticorrelation with incoming net radiation and air temperature. Received October 30, 1998 Revised May 26, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号