首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A seasonal snowcover blankets much of Canada during wintertime. In such an environment, the frequency of blowing snow events is relatively high and can have important meteorological and hydrological impacts. Apart from the transport of snow, the thermodynamic impact of sublimating blowing snow in air near the surface can be investigated. Using a time or fetch-dependent blowing snow model named 'PIEKTUK' that incorporates prognostic equations for a spectrum of sublimating snow particles, plus temperature and humidity distributions, it is found that the sublimation of blowing snow can lead to temperature decreases of the order of 0.5 °C and significant water vapour increases in the near-surface air. Typical predicted snow removal rates due to sublimation of blowing snow are several millimetres snow water equivalent per day over open Arctic tundra conditions. The model forecast sublimation rates are most sensitive to humidity, as well as wind speed, temperature and particle distributions, with a maximum value in sublimation typically found approximately 1 km downstream from blowing snow initiation. This suggests that the sublimation process is self-limiting despite ongoing transport of snow by wind, yielding significantly lower values of blowing snow sublimation rates (nearly two-thirds less) compared to situations where the thermodynamic feedbacks are neglected. The PIEKTUK model may provide the necessary thermodynamic inputs or blowing snow parameterizations for mesoscale models, allowing the assessment of the contribution of blowing snow fluxes, in more complex situations, to the moisture budgets of high-latitude regions.  相似文献   

2.
Little is known about the influence of coherent structures on the exchange process, mainly in the case of forest edges. Thus, in the framework of the ExchanGE processes in mountainous Regions (EGER) project, measurements of atmospheric turbulence were taken at different heights between a forest and an adjacent clear cutting using sonic anemometers and high-frequency optical gas analyzers. From these turbulence data, dominant coherent structures were extracted using an already existing wavelet methodology, which was developed for homogeneous forest canopies. The aim of this study is to highlight differences in properties of coherent structures between a forest and a clear cutting. Distinct features of coherent exchange at the forest edge are presented and a careful investigation of vertical and horizontal coupling by coherent structures around the surface heterogeneity is made. Within the forest, coherent structures are less frequent but possess larger time scales, indicating that only the largest coherent motions can penetrate through the forest canopy. At the forest edge, there is no crown layer that can hinder the vertical exchange of coherent structures, because these exhibit similar time scales at all heights. In contradiction to that, no improved vertical coupling was detected at the forest edge. This is mainly because the structures captured by the applied routine contribute less to total turbulent fluxes at the edge than within the forest. Thus, coherent structures with time scales between 10 and 40 s are not the dominant exchange mechanism at the forest edge. With respect to the horizontal direction, a consistent picture of coherent transport could be derived: along the forest edge there is mainly good coupling by coherent structures, whereas perpendicular to the forest edge there is mainly decoupling. Finally, it was found that there is a systematic modulation of coherent structures directly at the forest edge: strong ejection motions appear in all time series during the daytime, whereas strong sweeps dominate at night. An effect of wind direction relative to the forest edge is excluded. Consequently, it is hypothesized that this might be an indication of a quasi-stationary secondary circulation above the clear cutting that develops due to differences in surface temperature and roughness. Such circulations might be a relevant turbulent transport mechanism for ecosystem-atmosphere exchange in heterogeneous landscapes.  相似文献   

3.
Turbulence structures of high Reynolds number flow in the near-neutral atmospheric boundary layer (ABL) are investigated based on observations at Shionomisaki and Shigaraki, Japan. A Doppler sodar measured the vertical profiles of winds in the ABL. Using the integral wavelet transform for the time series of surface wind data, the pattern of a descending high-speed structure with large vertical extent (from the surface to more than 200-m level) is depicted from the Doppler sodar data. Essentially this structure is a specific type of coherent structure that has been previously shown in experiments on turbulent boundary-layer flows. Large-scale high-speed structures in the ABL are extracted using a long time scale (240 s) for the wavelet transform. The non-dimensional interval of time between structures is evaluated as 3.0–6.2 in most cases. These structures make a large contribution to downward momentum transfer in the surface layer. Quadrant analyses of the turbulent motion measured by the sonic anemometer (20-m height) suggest that the sweep motion (high-speed downward motion) plays a substantial role in the downward momentum transfer. In general, the contribution of sweep motions to the momentum flux is nearly equal to that of ejection motions (low-speed upward motions). This contribution of sweep motions is related to the large-scale high-speed structures.  相似文献   

4.
The object under study is the blowing snow, i.e., the transport of snow lifted from the snow surface. The method is described for predicting the blowing snow initiation using the output data of the WRF-ARW numerical atmospheric model. The skill scores are presented for the forecasts for January 2013 calculated from data of 10 stations of the Canadian weather observation network.  相似文献   

5.
Atmospheric stability effects on the dissimilarity between the turbulent transport of momentum and scalars (water vapour and temperature) are investigated in the neutral and unstable atmospheric surface layers over a lake and a vineyard. A decorrelation of the momentum and scalar fluxes is observed with increasing instability. Moreover, different measures of transport efficiency (correlation coefficients, efficiencies based on quadrant analysis and bulk transfer coefficients) indicate that, under close to neutral conditions, momentum and scalars are transported similarly whereas, as the instability of the atmosphere increases, scalars are transported increasingly more efficiently than momentum. This dissimilarity between the turbulent transport of momentum and scalars under unstable conditions concurs with, and is likely caused by, a change in the topology of turbulent coherent structures. Previous laboratory and field studies report that under neutral conditions hairpin vortices and hairpin packets are present and dominate the vertical fluxes, while under free-convection conditions thermal plumes are expected. Our results (cross-stream vorticity variation, quadrant analysis and time series analysis) are in very good agreement with this picture and confirm a change in the structure of the coherent turbulent motions under increasing instability, although the exact structure of these motions and how they are modified by stability requires further investigation based on three-dimensional flow data.  相似文献   

6.
Long-term study of coherent structures in the atmospheric surface layer   总被引:1,自引:2,他引:1  
A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport.  相似文献   

7.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

8.
Wind component fluctuations have been decomposed into contributions of large and small-scale eddies to study turbulence structures in the atmospheric surface layer over snow-covered pack ice for a case with snow drift and another without. It was found that on average, the large eddies contribute little to the covariance, but significantly to the variance of the horizontal wind components. The turbulent kinetic energy and the friction velocity show clearly expressed energy and flux variations. The time series of turbulent statistics, calculated on the basis of large eddies only, show the same behavior. However, the time variations of the turbulent kinetic energy and the friction velocity, determined by the small eddies, are suppressed when there is drifting snow.The occurrence of different types of motions (ejections, sweeps and interactions) was detected by the quadrant-technique. It was found that events with strong drag reduction during snow drift correspond to a strong increase of contributions from the first and third quadrant. However, strong drag reduction events in the case without snow drift are caused by a general decrease of contributions from all four quadrants. It was also found that interactions are significantly less correlated with ejections and sweeps in the case with snow drift than in the case without.  相似文献   

9.
Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.  相似文献   

10.
Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.  相似文献   

11.
植被内部及其上方湍流场的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
尹协远  J.D.Lin 《气象学报》1988,46(2):194-201
植被内部及其上方的湍流流场对于了解植被与大气之间的动量、热量和质量交换过程极其重要。本文把高阶湍流封闭模型的Reynolds应力方程模型(RSM)应用于植被湍流的计算,得到了风速、湍流动能、Reynolds应力及能量耗散率的垂直分布,与现场观测数据比较,甚为满意。  相似文献   

12.
Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the α calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.  相似文献   

13.
The presence of coherent structures in turbulent shear flows suggests order in apparently random flows. These coherent structures play an important dynamical role in momentum and scalar transport. To develop dynamical models describing the evolution of such motion, it is necessary to detect and isolate the coherent structures from the background fluctuations. In this paper, we decomposed atmospheric turbulence time series into large-scale eddies, which include coherent structures and small eddies, which are stochastic by using Fourier digital filtering. The wavelet energy computed for the three components of the velocity fluctuations in the large-scale eddies appears to have local maximum values at certain time scales, which correspond to the scales or frequencies of coherent structures. We extract coherent signals from large-scale vortices at this scale by inverse wavelet transform formulae. This method provides an objective technique for examining the turbulence signal associated with coherent structures in the atmospheric boundary layer. The average duration of coherent structures in three directions based on Mexican hat wavelets are 33 s, 34 s and 25 s respectively. Symmetric andanti-symmetric wavelet basis functions give almost the same results. The main features of the structures during the day and night have little difference. The dimensionless durations for u, v and w have linear correlations with each other. These relationships are insensitive to the wavelet basis.  相似文献   

14.
The turbulent flow in and above plant canopies is of fundamental importance to the understanding oftransport processes of momentum,heat and mass between plant canopies and atmosphere,and to microme-teorology.The Reynolds stress equation model(RSM)has been applied to calculate the turbulence in cano-pies in this paper.The calculated mean wind velocity profiles,Reynolds stress,turbulent kinetic energy andviscous dissipation rate in a corn canopy and a spruce forest are compared with field observed data and withWilson's and Shaw's model.The velocity profiles and Rynolds stress calculated by both models are in goodagreement,and the length scale of turbulence appears to be similar.  相似文献   

15.
Extraordinary blowing snow transport events in East Antarctica   总被引:1,自引:1,他引:0  
In the convergence slope/coastal areas of Antarctica, a large fraction of snow is continuously eroded and exported by wind to the atmosphere and into the ocean. Snow transport observations from instruments and satellite images were acquired at the wind convergence zone of Terra Nova Bay (East Antarctica) throughout 2006 and 2007. Snow transport features are well-distinguished in satellite images and can extend vertically up to 200 m as first-order quantitatively estimated by driftometer sensor FlowCapt?. Maximum snow transportation occurs in the fall and winter seasons. Snow transportation (drift/blowing) was recorded for ~80% of the time, and 20% of time recorded, the flux is >10?2 kg m?2 s?1 with particle density increasing with height. Cumulative snow transportation is ~4 orders of magnitude higher than snow precipitation at the site. An increase in wind speed and transportation (~30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation. Extensive presence of ablation surface (blue ice and wind crust) upwind and downwind of the measurement site suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. The observed wind-driven ablation explains the inconsistency between atmospheric model precipitation and measured snow accumulation value.  相似文献   

16.
Observations of drifting snow on small scales have shown that, in spite of nearly steady winds, the snow mass flux can strongly fluctuate in time and space. Most drifting snow models, however, are not able to describe drifting snow accurately over short time periods or on small spatial scales as they rely on mean flow fields and assume equilibrium saltation. In an attempt to gain understanding of the temporal and spatial variability of drifting snow on small scales, we propose to use a model combination of flow fields from large-eddy simulations (LES) and a Lagrangian stochastic model to calculate snow particle trajectories and so infer snow mass fluxes. Model results show that, if particle aerodynamic entrainment is driven by the shear stress retrieved from the LES, we can obtain a snow mass flux varying in space and time. The obtained fluctuating snow mass flux is qualitatively compared to field and wind-tunnel measurements. The comparison shows that the model results capture the intermittent behaviour of observed drifting snow mass flux yet differences between modelled turbulent structures and those likely to be found in the field complicate quantitative comparisons. Results of a model experiment show that the surface shear-stress distribution and its influence on aerodynamic entrainment appear to be key factors in explaining the intermittency of drifting snow.  相似文献   

17.
An Intercomparison Among Four Models Of Blowing Snow   总被引:4,自引:3,他引:1  
Four one-dimensional, time-dependent blowing snow models areintercompared. These include three spectral models, PIEKTUK-T,WINDBLAST, SNOWSTORM, and the bulk version of PIEKTUK-T,PIEKTUK-B. Although the four models are based on common physicalconcepts, they have been developed by different research groups. Thestructure of the models, numerical methods, meteorological field treatmentand the parameterization schemes may be different. Under an agreed standardcondition, the four models generally give similar results for the thermodynamic effects of blowing snow sublimation on the atmospheric boundary layer, including an increase of relative humidity and a decrease of the ambient temperature due to blowing snow sublimation. Relative humidity predicted by SNOWSTORM is lower than the predictions of the other models, which leads to a larger sublimation rate in SNOWSTORM. All four models demonstrate that sublimation rates in a column of blowing snow have a single maximum in time, illustrating self-limitation of the sublimation process of blowing snow. However, estimation of the eddy diffusioncoefficient for momentum (Km), and thereby the diffusion coefficients for moisture (Kw) and for heat (Kh), has a significant influence on the process. Sensitivitytests with PIEKTUK-T show that the sublimation rate can be approximately constant with time after an initial phase, if Km is a linear function with height. In order to match the model results with blowing snow observations, some parameters in the standard run, such as settling velocity of blowing snow particles in these models, may need to be changed to more practical values.  相似文献   

18.
In many atmospheric flows, a dispersed phase is actively suspended by turbulence, whose competition with gravitational settling ultimately dictates its vertical distribution. Examples of dispersed phases include snow, sea-spray droplets, dust, or sand, where individual elements of much larger density than the surrounding air are carried by turbulent motions after emission from the surface. In cases where the particle is assumed to deviate from local fluid motions only by its gravitational settling (i.e., they are inertialess), traditional flux balances predict a power-law dependence of particle concentration with height. It is unclear, however, how particle inertia influences this relationship, and this question is the focus of this work. Direct numerical simulations are conducted of turbulent open-channel flow, laden with Lagrangian particles of specified inertia; in this way the study focuses on the turbulent transport which occurs in the lowest few meters of the planetary boundary layer, in regions critical for connecting emission fluxes to the fluxes felt by the full-scale boundary layer. Simulations over a wide range of particle Stokes number, while holding the dimensionless settling velocity constant, are performed to understand the role of particle inertia on vertical dispersion. It is found that particles deviate from their inertialess behaviour in ways that are not easily captured by traditional theory; concentrations are reduced with increasing Stokes number. Furthermore, a similarity-based eddy diffusivity for particle concentration fails as particles experience inertial acceleration, precluding a closed-form solution for particle concentration as in the case of inertialess particles. The primary consequence of this result is that typical flux parametrizations connecting surface emission models (e.g., saltation models or sea-spray generation functions) to elevated boundary conditions may overestimate particle concentrations due to the reduced vertical transport caused by inertia in between; likewise particle emission may be underestimated if inferred from concentration measurements aloft.  相似文献   

19.
Well-developed low speed and high temperature streaks in association with the alignment of convection cells are observed in a large-eddy-simulation (LES) generated strongly sheared convective boundary-layer flow, which is driven by a geostrophic wind speed of 15 m s-1 and a surface kinematic heat flux of 0.05 K m s-1. Vortices that drive streaky structures are identified through an eigenvalue method (lambda;2method) near the surface. These vortices are highly elongated along the quasi-streamwise direction alternating sign of the x-component of vorticity (x). By conditional sampling of fully developed vortices, a statistically significant coherent structure is educed. The educed vortex is elongated to the streamwise direction with the elevation angle of about 17° above the horizontal surface. However, the horizontal tilting is not clearly demonstrated in the present simulation. Fluctuation fields in the domain of the educed vortex show the existence of a low speed and high temperature streak as a direct consequence of momentum and heat transport by vortical motions. The strong ejection(upward transport of low momentum or high temperature)occurring at the higher level than that of the strong sweep (downward transport of high momentum and low temperature) can be explained from the spatial distribution of the fluctuationfields of velocity and temperature. The contribution of ejection to the Reynolds stress at z/h1 = 0.18 is about 75%, which is slightly greater than that (70% at z/h1 = 0.173) for the neutrally stratified atmospheric boundary layer. Ejection is also found to be dominant for the turbulent heat flux.  相似文献   

20.
This paper presents a new triple-moment blowing snow model PIEKTUK-T by including predictive equations for three moments of the gamma size distribution. Specifically, predictive equations for the total number concentration, total mass mixing ratio, and total radar reflectivity for blowing snow are included. Tests in the context of idealized experiments and observed case studies demonstrate that the triple-moment model performs better than the double-moment model PIEKTUK-D in predicting the evolution of the number concentration, mixing ratio, shape parameter, and visibility in blowing snow, provided that the fall velocities for the total number concentration, mass mixing ratio, and radar reflectivity are weighted by the same order of the respective moments in both models. The power law relationship between the radar reflectivity factor and particle extinction coefficient found in PIEKTUK-T is consistent with one observed in snow storms. Coupling of the triple-moment blowing snow model to an atmospheric model would allow realistic studies of the effect of blowing snow on weather and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号