首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

3.
High precision total CO2 (TCO2) data are presented from the NW Weddell Sea obtained during two cruises which were 3 years apart. A TCO2 increase from 1993 to 1996 was observed in the newly formed bottom water, whereas no TCO2 increase was found in the surrounding water masses. Accompanying this TCO2 increase in the bottom water was an oxygen decrease. Obviously, bottom water with variable characteristics is produced along the margins of the Weddell Sea. Examination of possible causes leads to the conclusion that the bottom water variability is largely due to varying amounts of Warm Deep Water intruding onto the shelves of the Weddell Sea, thus changing the shelf water end-member of bottom water formation. Analysis of the data, using the observed differences of oxygen to perform a correction, suggested that some part of the TCO2 increase of the bottom water is due to the increased level of anthropogenic CO2. The TCO2 increase of the bottom water is commensurate to a tentative annual increase of about 1 μmol kg−1 in the surface water source of this bottom water. This would agree fairly well with the increase of the partial pressure of CO2 in the atmosphere.  相似文献   

4.
The distribution and abundance of the Weddell seal (Leptonychotes weddelli Lesson) in the fast ice and pack ice of the western Ross Sea, Antarctica, were investigated during 1967 and 1968 from icebreakers and accompanying helicopters. It was estimated that there were about 50,000 Weddell seals in the western Ross Sea between Cape Adare and McMurdo Sound. Weddell seals appear to breed mainly in the fast ice along the Victoria Land coast and less frequently in some nearby areas of pack ice. Fast ice is preferred to pack ice. Most Weddell seals in the pack ice were adults. General observations on the distribution of crabeater, leopard, and Ross seals are included.  相似文献   

5.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

6.
Diatoms are major primary producers of microbial biomass in the Antarctica. They are found in the water and sea ice. The distribution, abundance of the ice diatoms and their relation to the environmental factors inside and outside the ice have been studied for its special role in the Antarctic Ocean ecology. In this paper we describe the abundance, distribution and composition of diatom assemblages in  相似文献   

7.
Exploration and development of offshore hydrocarbon resources has advanced into remote deepwater regions over the last decade and poses significant technical challenges for the design and installation of wells and facilities at extreme water depths. Seafloor and shallow subsurface processes and conditions in these areas are complex and generally poorly understood, and the geohazards to development are larger scale and fundamentally different to those encountered onshore; consequently the geohazard risk to deepwater development projects is potentially significant and requires careful evaluation and mitigation during the front-end planning and engineering design stages of projects. There are no established industry standards or methods for the assessment of geohazards and engineering-quality geophysical data at the scale of development. The paper describes an integrated and systematic map-based approach for the assessment and mitigation of seabed geohazards and risk to proposed deepwater development. The approach employs a multi-disciplinary team working with engineering-quality field calibrated data to accurately map and assess seafloor ground conditions and ensure that development proposals are not exposed to intolerable geohazard risk. The approach taken is very similar to the practice of establishing geological models for land-based engineering projects, in which the complete geological history of the site is used to characterise and predict the performance of the ground. Such an approach is routine for major projects on land but so far does not seem to be common practice in the offshore industry. The paper illustrates the seafloor geomophological mapping approach developed. The products are being used to optimise development layouts to avoid geohazards where possible and to support site-specific engineering design of facilities based on a detailed understanding of the potential geohazard loadings and associated risk.  相似文献   

8.
The antarctic sea ice was investigated upon five occasions between January 4 and February 15, 2003. The investigations included: (1) estimation of sea ice distribution by ship-based observations between the middle Weddell Sea and the Prydz Bay; (2) estimation of sea ice distribution by aerial photography in the Prydz Bay; (3) direct measurements of fast ice thickness and snow cover, as well as ice core sampling in Nella Fjord; (4) estimation of melting sea ice distribution near the Zhongshan Station; and (5) observation of sea ice early freeze near the Zhongshan Station. On average, sea ice covered 14.4% of the study area. The highest sea ice concentration (80%) was observed in the Weddell Sea. First-year ice was dominant (99.7%-99.8%). Sea ice distributions in the Prydz Bay were more variable due to complex inshore topography, proximity of the Larsemann Hills, and/or grounded icebergs. The average thickness of landfast ice in NeUa Fjord was 169.5 cm. Wind-blown snow redistribution plays an important role in affecting the ice thickness in Nella Fjord. Preliminary freezing of sea ice near the Zhongshan Station follows the first two phases of the pancake cycle.  相似文献   

9.
Abstract. Seven harpacticoid species were found to be associated with sea ice collected during 5 Antarctic cruises of the RV Polarstern. Their distribution within the fast ice and pack ice zones of the Weddell Sea is presented. Whereas some individuals probably become entrapped into the ice only accidentally, at least 4 species arc genuinely sympagic. These have evolved remarkable adaptations, as evidenced by field and laboratory studies of Dresclieriella glacialis , which is by far the most abundant. Such adaptations include: the ability to penetrate deep into ice; a comparatively high salinity tolerance allowing it to endure large salinity fluctuations associated with ice crystal formation and melting; good swimming ability, necessary both for horizontal dispersal and for a planktonic intermezzo after annual melting of the sea ice. D. glacialis is the first polar non-vertebrate mctazoan to be cultivated through its entire life cycle. Its life history suggests an r-stratcgy; this would be the first indication of such a trait in the polar environment. A new species of Drescheriella , on the other hand, exhibits resting stages (C IV-V) known to date only for Calanoidu but not reported for Harpacticoida.  相似文献   

10.
To investigate the hydrodynamic activity of the seabed in the German Bight, underwater remote sensing was carried out over an area of 32 km2 located 20 km northeast of Helgoland island in the southern North Sea in January, May and August 2001. On the basis of acoustic seabed classification, six seabed types have been identified by the combined evaluation of side-scan sonar records, wave-shape analysis of echo-sounder data, and 100 grab samples. In five seabed types, the acoustic classes can be distinguished on the basis of sediment characteristics, comprising size components ranging from coarse pebbles to fine sand. The sixth seabed type corresponds to large pebbles and cobbles which are completely overgrown with brown algae. Statistically, the complex spatial patchiness of the six classes varied significantly in the course of the study period. During the winter period (January 2001), the study site was dominated by coarse material, except for a small area of finer sediment in the centre. With the onset of more moderate weather conditions in spring (May 2001), a general fining trend in sediment composition was observed, especially in the deeper western parts of the study area. In summer (August 2001), finer sediments still dominated but a slight increase in signal roughness suggests an overprint by coarser lag deposits and/or denser coverage by benthic organisms (e.g. Lanice conchilega) which then were found more frequently in grab samples, in association with finer sand. These findings demonstrate that the distribution of seafloor sediments and their benthic fauna in the deeper part of the German Bight region are controlled largely by seasonal changes in hydrodynamic conditions. These changes are reflected in correspondingly high variability in the complex patchiness of sediment distribution patterns, which would not have been adequately resolved by any standard sampling procedure.  相似文献   

11.
We present the results of a marine geophysical investigation of the northern Prince Gustav Channel. By comparative analysis of multibeam bathymetric data, single channel seismic reflection profiles, underway chirp sonar data, ADCP current data and sediment coring, we define the main morphological elements of the area. In particular we define the glacial morphogenesis in relation to the excavation of inner shelf basins and troughs along structural discontinuities and lithologic boundaries. We identify streamlined surfaces that testify to the grounding of ice and past ice flow directions. These glacial forms are found only on glacial tills preserved in the deepest part of the basins, while net erosion to bedrock has occurred elsewhere. Since the Last Glacial Maximum (LGM), the relict glacial morphology has been draped by hemipelagic and diatomaceous mud, and bottom currents have played a major role in focusing sedimentation within small depocentres, that we define as contouritic drifts. Based on shallow sediment architecture and supported by direct measurements, we propose that the direction of bottom water flow is from the outer shelf into the Prince Gustav channel as a result of a combination of tidal currents and ice shelf-related thermohaline circulation.  相似文献   

12.
The investigation on sea-ice biology in combination with physics, chemistry and ecology was carried out in the northwestern Weddell Sea, Antarctica, during the cruise ANT/XX III-7 on board POLARSTERN in the austral winter (August-October) in 2006. The distribution of chlorophyll a was measured and related to sea ice texture. The mean concentrations of chlorophyll a in the sea ice varied considerably with ice texture. The concentration of chlorophyll a per core ranged from 2.10– 84.40 μg/dm 3 with a mean of 16.56 μg/dm 3 . And the value of R (chlorophyll a / gross chlorophyll) ranged from 0.79–0.83. These high winter chlorophyll values indicate that primary production is considerable and confirms that there is significant primary production in Antarctic sea ice during winter. Thus this constitutes a major proportion of southern ocean primary production and carbon flux before the sea ice retreats.  相似文献   

13.
Bathymetric, gravity, and magnetic data from Antarctic expeditions with RV POLARSTERN and satellite altimeter data from the Geosat Geodetic Mission are analysed using methods from geostatistics and geophysical inverse theory.The Explora Escarpment represents the edge between the Antarctic Continental Shelf and the Weddell Abyssal Plain. It is an important link in the reconstruction of Gondwana breakup, but a feature as large as the 2000 m deep Wegener Canyon was only discovered in 1984, when extensive bathymetric, gravimetric, and magnetic surveys with RV POLARSTERN began.Geostatistics, the theory of regionalized variables, is applied to integrate dense surveys of Wegener Canyon and sparse observations in adjacent areas into maps with full coverage of the 230 km by 330 km area at 10°–20° W/70°–72° S. The resultant highresolution bathymetric and gravity maps reveal detailed structures of the Explora Escarpment. Using geophysical inversion, the gravity terrain effect is calculated. Satellite data are used for their better coverage, but have much lower resolution. Nevertheless, the structures of Wegener Canyon and other more prominent features appear with surprisingly good correlation also in the Geosat altimeter data. While it was initially supposed that Wegener Canyon is purely an erosional structure, the magnetic map now provides evidence of the canyon's tectonic origin.  相似文献   

14.
2006年冬末春初,在德国POLARSTERN科学考察船执行南极威德尔海西北海域考察期间,调查了考察区海冰物理和海洋生物。本文观测了航线上钻取的27支海冰冰芯的组构和71个冰晶体薄片;分析得到393组冰温数据;348组盐度、密度数据和311组叶绿素a和脱镁叶绿素含量数据;通过302组冰内相同深度孔隙率和叶绿素a含量数据分析,发现海冰物理参数影响冰内叶绿素a含量的新证据;利用收集的雪、冰厚度数据以及环境容量制约生态平衡的规律,建立了雪、冰厚度对冰底叶绿素繁荣的影响以及;确立了南极粒状冰和柱状冰内叶绿素a上限含量同卤水体积的关系。从而表达了冰晶体对卤水排泄的效应和冰物理性质对南极春季冰底和冰-水界面叶绿素a增长的贡献。此外,还得出海冰物理性质影响冰藻,并且是南极冰区水体浮游植物繁荣的关键控制因素。  相似文献   

15.
Eleven subtropical coccolithophore species were identified in three samples taken in the austral autumn from the Weddell Sea, Antarctic, between 69°S and 70°S, just south of the Antarctic Slope Front. This is the first report of coccolithophores present at such southern latitudes. We provide three hypotheses for their occurrence in the Weddell Sea: (1) Coccolithophore species have wider temperature tolerances than previously believed. (2) Coccolithophores found in the Weddell Sea were part of a remnant community from the Agulhas Current. (3) Coccolithophores were transported by a N–S eddy crossing the Brazil–Malvinas confluence region and then subsequently transported to the east by warm water eddies of the Antarctic Circumpolar Current to the study location. Further temperature tolerance experiments with coccolithophores are recommended.  相似文献   

16.
Tritium data were collected between 1985 and 1987 on several cruises of the German research icebreaker “Polarstern” to the Weddell Sea. Maximum tritium concentrations in the surface waters are of the order of 200 mTU. The minimum values observed in the Weddell Sea Deep Water at about 1000 m depth are about 15–40 mTU. The bottom waters show tritium concentrations of about 70–100 mTU in the central gyre, increasing to about 120 mTU in the northwestern corner of the Weddell Sea. The overflowing Ice Shelf Water observed on the continental slope west of the Filchner Depression has tritium concentrations close to those of the surface waters, indicating rapid renewal of this water mass. The data reflect the rapid renewal of the bottom waters in the northwestern corner of the Weddell Sea and the mixing of bottom water from this boundary current into the bottom waters of the central Weddell Gyre.  相似文献   

17.
On the basis of new geophysical data acquired by the Federal Institute of Geosciences and Natural Resources (BGR) and the Polar Marine Geological Research Expedition (PMGRE) as well as existing data new geophysical maps were compiled for the Lazarev Sea and the Riiser-Larsen Sea between 10°W and 25°E. The new results are: – The drastic change in the strike direction of the volcanic Explora Wedge between longitudes 10°W and 5°W is accompanied with a gradual change from one major wedge, i.e. the Explora Wedge, into at least two wedge-shaped volcanic constructions, each manifested by a sequence of seaward-dipping reflectors in the seismic records. – The southern Lazarev Sea is best described as a continental margin affected by multiple rifting episodes accompanied with transient volcanism. – A distinct N80°E striking basement depression separates the volcanic-prone continental margin of the southern Lazarev Sea from oceanic crust upon which the Maud Rise rests. The southern scarp of the narrow depression was presumably aligned with the eastern scarp of the Mozambique Ridge during the Early Cretaceous. – The Astrid Ridge proper occupies the transition from the volcanic-prone continental margin of the Lazarev Sea to old oceanic crust of the Riiser -Larsen Sea, and it rests upon a large volcanic apron which covers the basement of the southwestern Riiser-Larsen Sea. – No evidence was found that prolific volcanism has affected the early opening of the Riiser-Larsen Sea. – The Lazarev Sea is a sediment-starved region.  相似文献   

18.
Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.–Nov. 1996; mid-late summer, Jan.–Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.–Dec. 1997). Rates of microzooplankton herbivory were measured using a modified dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insufficient to impact significantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplankton mortality rates that were significantly different from zero. The highest mortality rate observed in this study (0.26 d−1) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems. Results from twenty experiments examining the rate of decrease of phytoplankton biomass during incubations in the dark agreed quite well with the results of the dilution experiments performed at the same time. The range of mortality rates for the dark incubations was −0.09–0.06 d−1, and the average was essentially zero (−0.01 d−1). That is, chlorophyll concentration was virtually unchanged in samples incubated in the dark for 3 d. A number of factors appeared to contribute to the very low rates of microbial herbivory observed, including low water temperature, and the size and taxonomic composition of the phytoplankton assemblage. Based on our results we conclude that the seasonal, massive phytoplankton blooms observed in the Ross Sea are due, in part, to low rates of removal by microbial herbivores.  相似文献   

19.
We present a compilation of more than 45,000 km of multichannel seismic data acquired in the last three decades in the Weddell Sea. In accordance with recent tectonic models and available drillhole information, a consistent stratigraphic model for depositional units W1–W5 is set up. In conjunction with existing aeromagnetic data, a chronostratigraphic timetable is compiled and units W1.5, W2 and W3 are tentatively dated to have ages of between 136 Ma and 114 Ma. The age of W3 is not well constrained, but might be younger than 114 Ma. The data indicate that the thickest sediments are present in the western and southern Weddell Sea. These areas formed the earliest basins in the Weddell Sea and so the distribution of Mesozoic sediments is in accordance with the tectonic development of the ocean basin. In terms of Cenozoic glacial sediments, the largest depocenters are situated in front of the Filchner–Ronne Shelf, i.e. at the Crary Fan, with a thickness of up to 3 km.  相似文献   

20.
《Ocean Modelling》2004,6(1):83-100
A series of vertical mixing schemes implemented in a circumpolar coupled ice–ocean model of the BRIOS family is validated against observations of hydrography and sea ice coverage in the Weddell Sea. Assessed parameterizations include the Richardson number-dependent Pacanowski–Philander scheme, the Mellor–Yamada turbulent closure scheme, the K-profile parameterization, a bulk mixed layer model and the ocean penetrative plume scheme (OPPS). Combinations of the Pacanowski–Philander parameterization or the OPPS with a simple diagnostic model depending on the Monin–Obukhov length yield particularly good results. In contrast, experiments using a constant diffusivity and the traditional convective adjustment cannot reproduce the observations. An underestimation of wind-driven mixing in summer leads to an accumulation of salt in the winter water layer, inducing deep convection in the central Weddell Sea and a homogenization of the water column. Large upward heat fluxes in these simulations lead to the formation of unrealistic, large polynyas in the central Weddell Sea after only a few years of integration. Furthermore, spurious open-ocean convection affects the basin-scale circulation and leads to a significant overestimation of meridional overturning rates. We conclude that an adequate parameterization of both wind-induced mixing and buoyancy-driven convection is crucial for realistic simulations of processes in seasonally ice-covered seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号