首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The continental margin offshore of western Ireland offers an opportunity to study the effects of glacial forcing on the morphology and sediment architecture of a mid-latitude margin. High resolution multibeam bathymetry and backscatter data, combined with shallow seismic and TOBI deep-towed side-scan sonar profiles, provide the basis for this study and allow a detailed geomorphological interpretation of the northwest Irish continental margin. Several features, including submarine mass failures, canyon systems and escarpments, are identified in the Rockall Trough for the first time. A new physiographic classification of the Irish margin is proposed and linked to the impact of glaciations along the margin. Correlation of the position and dimensions of moraines on the continental shelf with the level of canyon evolution suggests that the sediment and meltwater delivered by the British–Irish Ice Sheet played a fundamental role in shaping the margin including the upslope development of some of the canyon systems. The glacial influence is also suggested by the variable extent and backscatter signal of sedimentary lobes associated with the canyons. These lobes provide an indirect measurement of the amount of glaciogenic sediment delivered by the ice sheet into the Rockall Trough during the last glacial maximum. None of the sedimentary lobes demonstrates notable relief, indicating that the amount of glaciogenic sediment delivered by the British–Irish Ice Sheet into the Rockall Trough was limited. Their southward disappearance suggests a more restricted BIIS, which did not reach the shelf edge south of 54°23′ N. The various slope styles observed on the Irish margin represent snapshots of the progressive stages of slope development for a glacially-influenced passive margin and may provide a predictive model for the evolution of other such margins.  相似文献   

2.
Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise.Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas.We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source.  相似文献   

3.
Most of the recent models which aim at explaining the origins of canyons call on mechanisms of retrogressive failure. The interpretation of high-resolution seismic reflection profiles permitted the recognition of the shelf and slope evolution of Naples Bay (eastern Tyrrhenian Sea margin) during the formation of the Dohrn canyon. Stratigraphic and structural data collected from this area suggest that the factor which triggered off the formation of the canyon was the tectonic uplift of both the outer shelf and fluvial valley mouth which took place during the eustatic fall of sea level. Received: 12 May 1999 / Revision accepted: 19 May 2000  相似文献   

4.
The canyon system, including 17 small slope-confined canyons in the Shenhu area, northern South China Sea, is significantly characterized by mounded or undulating features on the canyon flanks and canyon heads. However, the mechanism underlying the formation of these features has yet to be elucidated. In previous studies, most of them were interpreted as sediment deformation on the exploration seismic profiles. In this paper, we collected high-resolution bathymetric data, chirp profiles and geotechnical test data to investigate their detailed morphology, internal structures, and origin. The bathymetric data indicated that most mounded seismic units have smooth seafloors and are separated by grooves or depressions. The distance between two adjacent mounded units is only hundreds of meters. On chirp profiles, mounded seismic units usually exhibit chaotic reflections and wavy reflections, of which the crests migrate upslope. The slope stability analysis results revealed that the critical angle of the soil layers in the study area tends to be 9°, indicating that most mounded seismic units on the canyon flanks and heads are stable at present. The terrain characteristics and seismic configurations combined with the slope stability analysis results indicated that most mounded seismic units are not sediment deformation but depositional structures or mixed systems composed of deformation and depositional structures.  相似文献   

5.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   

6.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   

7.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

8.
High-resolution and high-density 2-D multichannel seismic data, combined with high-precision multibeam bathymetric map, are utilized to investigate the characteristics and distribution of submarine landslides in the middle of the northern continental slope, South China Sea. In the region, a series of 19 downslope-extending submarine canyons are developed. The canyons are kilometers apart, and separated by inter-canyon sedimentary ridges. Numerous submarine landslides, bounded by headscarps and basal glide surfaces, are identified on the seismic profiles by their distorted to chaotic reflections. Listric faults and rotational blocks in head areas and compressional folds and inverse faults at the toes of the landslides are possibly developed. Three types of submarine landslides, i.e., creeps, slumps, and landslide complexes, are recognized. These landslides are mostly distributed in the head areas and on the flanks of the canyons. As the most widespread landslides in the region, creeps are usually composed of multiple laterally-coalesced creep bodies, in which the boundaries of singular component creep bodies are difficult to delineate. In addition, a total of 77 landslides are defined, including 61 singular slumps and 16 landslide complexes that consist of two or more component landslides. Statistics show that most landslides are of a small dimension (0.53–18.09 km² in area) and a short runout distance (less than 3.5 km). Regional and local slope gradients and rheological behavior of the displaced materials might play important roles in the generation and distribution of the submarine landslides. A conceptual model for the co-evolution of the canyons and the associated landslides in the study area is presented. In the model it is assumed that the canyons are initiated from gullies created by landslides on steeper sites of the continental slope. The nascent canyons would then experience successive retrogressive landsliding events to extend upslope; at the same time canyon downcutting or incision would steepen the canyon walls to induce more landslides.  相似文献   

9.
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.  相似文献   

10.
P.J Ramsay 《Marine Geology》1994,120(3-4):225-247
The geostrophic current-controlled northern Zululand shelf displays a unique assemblage of interesting physical, sedimentological and biological phenomena. The shelf in this area is extremely narrow (3 km) and is characterised by submarine canyons, coral reefs, and steep gradients on the continental slope. Three submarine canyons occur in the study area and are classified as mature- or youthful-phase canyons depending on the degree to which they breach the shelf. These canyons originated as mass-wasting features which were exploited by palaeo-drainage during sea-level regressions. Shelf lithology is dominated by a series of coast-parallel patch coral reefs which have colonised beachrock and aeolianite sequences that extend semi-continuously from −5 to −95 m, and delineate late Pleistocene palaeocoastline events. The unconsolidated sediment on the shelf is either shelf sand (mainly terrigenous quartz grains) or bioclastic sediment. Large-scale subaqueous dunes commonly form in the unconsolidated sediment on the outer-shelf due to the Agulhas Current flow. These dunes occur as two distinct fields at depths of −35 to −70 m; the major sediment transport direction is towards the south, but occasional bedload parting zones exist where the bedform migration direction changes from south to north.  相似文献   

11.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

12.
Sleeve-gun, 3.5-kHz, and 12-kHz profiles from the Labrador Slope provide the basis for an analysis of sedimentary facies, processes, and evolution of a continental slope adjacent to an ice margin. The upper slope is deeply incised by numerous canyons reflecting headward canyon branching. The less rugged middle-slope topography has fewer canyons and large slide and slump scars followed downslope by debris-flow deposits. Echo character of seismic profiles reflects the difference in sediment types supplied from mud-dominated sources and sand-, gravel- and till-dominated sources. On the rise, debris-flow deposits are largely confined to canyons. Intercanyon areas are dominated by spill-over turbidites alternating with hemipelagic sediments, which on some of the southern to southwestern levees occur in sediment-wave fields formerly attributed to bottom-current activity.  相似文献   

13.
远海孤立碳酸盐台地周缘发育了碳酸盐岩峡谷, 对其开展研究有助于深刻理解碳酸盐碎屑沉积物的“源-汇”体系及深水油气成藏等方面。文章利用多波束测深、高分辨率二维多道地震等数据, 精细刻画南海西沙海域永乐海底峡谷的地貌形态及内部充填特征, 揭示该峡谷沉积演化过程, 分析峡谷成因控制因素及稳定性。永乐海底峡谷形成演化可分为萌芽、汇聚和拓展3个阶段, 随着演化过程的发展, 峡谷规模及对沉积物输运作用增加。永乐海底峡谷形成及演化主要受古地貌隆起形成的负地形和沉积物重力流侵蚀作用影响。峡谷在第四纪以后仍有较明显的活动迹象。分析显示永乐海底峡谷是西北次海盆的重要物质输送通道, 其沉积演化过程及稳定性对研究碳酸盐台地沉积物输运等深水沉积过程及岛礁工程建设具有一定参考意义。  相似文献   

14.
We describe the quantitative and compositional (phytopigment, protein, carbohydrate and lipid) patterns of sedimentary organic matter along bathymetric gradients in seven submarine canyons and adjacent open slopes located at four European regions: one along the NE Atlantic and three along the Mediterranean continental margins. The investigated areas are distributed along a putative longitudinal gradient of decreasing primary production from the Portuguese (northeastern Atlantic Ocean), to the Catalan (western Mediterranean Sea), Southern Adriatic (central Mediterranean Sea) and Southern Cretan (eastern Mediterranean Sea) margins. Sediment concentrations of organic matter differed significantly between the Portuguese margin and the Mediterranean regions and also from one study area to the other within the Mediterranean Sea. Differences in quantity and composition of sediment organic matter between canyons and open slopes were limited and significant only in the eutrophic Portuguese margin, where the differences were as large as those observed between regions (i.e. at the mesoscale). These results suggest that the overall trophic status of deep margin sediments is controlled mostly by the primary productivity of the overlying waters rather than by the local topography. Moreover, we also report that the quantity and nutritional quality of sediment organic matter in canyons and adjacent open slopes do not show any consistent depth-related pattern. Only the Nazaré and Cascais canyons in the Portuguese margin, at depths deeper than 500 m, displayed a significant accumulation of labile organic matter. The results of our study underline the need of further investigations of deep margins through sampling strategies accounting for adequate temporal and spatial scales of variability.  相似文献   

15.
 Closely spaced, single-beam bathymetric and side-scan sonar investigations on the northern slope of the western Svalbard insular platform have revealed the presence of a Late Quaternary slump complex forming a hanging-wall slump canyon near the head of the Malene Bukta (Malene Bay) bathymetric embayment in the northern continental margin. Repeated slump erosion may be responsible for development of this young feature and the Malene Bukta Embayment. Focusing of the slumping may be due to the trapping of gas at shallow sea-floor depths by gas hydrate, with the consequent formation of subjacent gas-rich, low shear-strength decollement zones. Faults have likely controlled the upward migration of gas into the younger sedimentary prism.  相似文献   

16.
Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.  相似文献   

17.
Sedimentological and geochemical investigations of 45 box cores collected in various morphological settings of the Cap-Ferret Canyon (Bay of Biscay) are presented to document accurately present-day sedimentary processes on the eastern Atlantic continental slope. The magnitude and variations through time and space of the canyon's channelling or sinking effect on fine-grained particles behaviour in comparison with sediment flux across the continental margin was particularly considered and discussed:1. All the parameters (grain-size, carbonate and water content, major and trace elements), measured both in surface sediment and downcore, demonstrate that the characteristics at the sediment interface vary with water depth and with the morphological setting.2. Surface sediment is generally coarser-grained, more terrigenous and deposited at higher rate in the canyon than outside. The terrigenous particle supply must be preferentially directed and trapped within the canyon's depression due to present-day dynamic conditions.3. The downcore gradients reflected in grain-size variations yield information on settling processes. The coarse-grained population has the characteristics of a winnowed sediment similar to those on the outer shelf, while the fine-grained population has grain-size spectra very similar to the present-day fine-grained suspensions.4. The carbonate particles are partly derived from direct pelagic production (distinct grain-size distribution) and, like terrigenous grains, are partly reworked (similar downslope decrease in the coarse grained fraction). The relatively low CaCO3 content observed in the canyon, and its downward increase up to values observed at shallower depths, may result from a channelling of terrigenous suspensions within the canyon.5. At the present high sea-level stand, the canyon should become a trap for sediments without much gravity remobilisation, as indicated by a lack of sedimentary structures in box cores. However, a simple increase in sediment trapping can hardly account for the downcore gradients observed in the box cores. These trends, which are observed on other continental margins (Monaco et al., 1993, Journées spécialisées de la Soc. Géol. France: Géosciences Marines, 16–17 December 1994, Abstract p. 83.), indicate a probable increase in terrigenous supplies and/or in settling energy.  相似文献   

18.
The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.  相似文献   

19.
The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.  相似文献   

20.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号