首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Today already numerous micromycetes are a recognized part of the biocenosis of growth in receiving waters strongly polluted by organically rich waste waters and of growth on biofilter media surfaces. The principal representatives are some Deuteromycetes, Mucorales and Saccharomycetaceae, whereas the so-called true aquatic fungi (Oomycetes) with the exception of Leptomitus lacteus are practically absent. The growth of micromycetes in activated sludge remains still an unanswered question. Generally, the filaments in the activated sludge are ascribed to filamentous bacteria and as long as fungi were isolated from activated sludge their presence has been reported only in the form of spores. The nitrogen deficiency with regard to carbon present in the waste water is considered as one of the factors enhancing the development of fungi in the activated sludge. In a series of 13 tests carried out on laboratory-scale batch models using synthetic waste water, where the carbon source was glucose and the nitrogen source was (a) sodium nitrate, (b) ammonium sulphate, and (c) peptone, the fungal growth was studied in different models with the BOD:N ratio varying from 20 to 1000. The models were seeded with thickened activated sludge from the municipal sewage works. The sludge did not contain any microscopically detectable forms of fungoid growth. It was found that the fungi in activated-sludge medium grow well and both in the forms of single cells, occuring independently and in chains, as well as in the form of long branched filaments. In some instances, the micromycetes formed up to 80 to 100 per cent of the biocenosis of the activated-sludge flocs, but the dependency of their development on the increasing BOD:N ratios in the waste water has not been ascertained. Fifteen species of micromycetes were isolated and identified, and in addition several representatives of Saccharomycetaceae, which were not identified.  相似文献   

2.
Summary The protein component of activated sludge is constituted by numerous aminoacids. The amino-acid content of 1 lb. of activated sludge solids (produced by the purification of about 1000 gal. of sewage) may be quantitatively and qualitatively compared with that of 0·50 gal. of fresh cow milk.   相似文献   

3.
Contradictory results are reported for the behaviour of quaternary ammonium compounds (QACs) in sewage treatment plants (STPs). QACs may sorb onto activated sludge. Only little information is available with respect to effects of QACs against bacteria in STPs. Only 5 to 15 % of bacteria present in sewage sludge can be detected by means of culture dependent microbiological methods. The shift of the bacterial populations due to effects of test compounds have not been studied up to now with culture independent methods. The microbial populations shift was studied in situ using culture independent chemotaxonomy profiling ubiquinones and polyamines. Additionally, toxic effects of QACs against bacteria present in the test vessels of the Zahn‐Wellens test (OECD 302 B) were assessed with a toxicity control in the test. The ubiquinone profiles representing changes in Gram‐negative populations mainly showed that the activated sludge was affected only in test vessels containing benzalkonium chloride. According to chemotaxonomy Acinetobacter or/and some members of Pseudomonas spp. have been selected by benzalkonium chloride after some adaptation period (8 to 12 days).  相似文献   

4.
In search for a suitable and fast analytical method for assessing kinds of activated carbon for water purification there were carried out investigations with hydrogen peroxide. According to their catalytic activity, the various kinds of activated carbon are capable of decomposing hydrogen peroxide to different degrees and at different rates. The released oxygen can be determined volumetrically. The results of investigation obtained on always fresh carbon samples with acid and basic groups were discussed on the basis of the velocity constants of the oxygen development. An assessment of quality would be possible, in principle, but the surface characteristic of the kinds of carbon is considerably superimposed by influences of morphology, so that applying this method is advised against.  相似文献   

5.
As investigations on model solutions and real wastewaters with 30 … 33 g/l phenol and 5 … 10 g/l formaldehyde as well as pH = 2 … 3 have shown, the following technique of sewage purification proves to be optimal: condensation with addition of 7 g/l sulphuric acid at 98 °C, settling of the condensation products formed for 8 h, centrifugation of the supernatant and adsorption on activated carbon or a polymer sorbent (XAD 4). Preference should be given to activated carbon. The residual concentrations amount to 0.1 mg/l for both phenol and formaldehyde. The adsorbents are largely fully regenerated with methanol, the regeneration solution containing 11 … 20 g/l phenol.  相似文献   

6.
The eastern Mediterranean is naturally highly oligotrophic, but urbanization along the Levant coast has led to raised organic and nutrient loads. This study tracks living foraminiferal assemblages at two sites near an activated sewage sludge outfall from 11/2003 to 5/2004. Oligotrophic site PL29 shows seasonal variations in O2, chlorophyll a, and organic carbon, and has an abundant, diverse benthic foraminiferal assemblage living at various in-sediment depths. At eutrophic site PL3, ∼16 years of sludge injection favor a depleted assemblage primarily of opportunist foraminifera. This site shows less seasonality, is subjected to organic matter overload, O2-stress, and periodic anoxia, foraminifera are less abundant and diverse, and live at shallower depths. The assemblages at both sites represent a common pool of species, with Ammonia tepida highly dominant. Benthic foraminifera were therefore found to be sensitive to trophic trajectories, respond on sub-seasonal time-scales, and track injection and dispersal of organic loads on the shelf.  相似文献   

7.
This study investigated the effectiveness of a new packing material, namely mixed rice husk silica with dried activated sludge for removing H2S. Dried sewage sludge was collected from Putrajaya sewage treatment plant in Malaysia. Rice husk silica was prepared at temperature of 800°C, after acid leaching and mixed with dried sewage sludge to be utilized in a polyvinyl chloride filter. The system was operated under variable conditions of two parameters, different inlet gas concentration and different inlet flow rate. H2S was passed through the filter with one liter of the packing material. More than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 90–45 s and 300 ppm inlet concentration was observed. However, the RE decreased to 96.87% with the EBRT of 30 s. The maximum elimination capacity (EC) of 52.32 g/m3/h was obtained with the RE of 96.87% and H2S mass loading rate of 54 g/m3/h, while at the RE of 99.96%, maximum EC was 26.99 g/m3/h with the H2S mass‐loading rate of 27 g/m3/h. A strong significant correlation between increasing of H2S mass loading rate and pressure drop was also detected (p < 0.01). Maximum pressure drop was 3.0 mm H2O after 53 days of operating time, the EBRT of 30 s, and 54 g/m3/h of H2S loading rate. These observations suggest that the mixture of rice husk silica with dried activated sludge is a suitable physico‐biological filter for H2S removal.  相似文献   

8.
The use of antidepressants is widespread in modern times. Thus, they present a potential risk for ecosystems due to occurrence in domestic sewage containing unaltered metabolites and structures, even after the treatment plants have processed the sewage. The current research investigated the sorption and desorption of antidepressants(citalopram, venlafaxine, fluoxetine, sertraline, and amitriptyline) and caffeine from freshwater sediment and sewage sludge. The samples of freshwater sediment were ...  相似文献   

9.
Thermocatalytic low temperature conversion (LTC) is a new method for the disposal of sewage sludge. Using this method, sludge is converted into a residual solid (coal) along with reaction water, oil, and non‐condensable gases. The oil can be used as an energy source and the coal as a substitute for charcoal. To this end, it is important to determine whether there are any easily available contaminants present in the coal generated by the process. Contaminants that can be strongly sorbed by sewage sludge solids are, e. g., pharmaceuticals and disinfectants. As an example the fate of the persistent and strong adsorbing disinfectant benzalkonium chloride (BAC) has been investigated within the LTC process. The sewage sludge was spiked with BAC and then subjected to the LTC process. The resulting coal was extracted and analyzed using LC‐LC/ESI‐MS/MS (ion trap). BAC could not be detected in the LTC coal, although it could be extracted from the spiked sludge before the LTC treatment. It can thus be concluded that the investigated compound is not easily available in the coal, and hence that its use does not present a risk.  相似文献   

10.
A laboratory study was conducted to determine the effect of bacterial augmentation with LLMO (liquid live microorganisms) on the activated sludge treatment of potato wastewaters. Completed mixed activated sludge bench scale reactors were used in this study. Parameters varied during the continuous reactor run included hydraulic detention time, LLMO addition, and powdered activated carbon addition. The hydraulic detention time lasted 1, 2, and 3 days, while the sludge age was maintained at 10 days for both reactors. The bio-augmented reactor had a better COD removal than the non-bio-augmented reactor at a lower MLVSS level in the reactor. It is concluded that bacterial augmentation with LLMO improved slightly the COD removal efficiency in treating potato wastewaters with the activated sludge process. The bio-augmentation increased the substrate removal rate, increased the oxygen utilization, and decreased the excess sludge production.  相似文献   

11.
The X-ray fluorescence analysis is an important means for the determination of the heavy metal concentrations in sewage sludges and for the evaluation of their usability in agriculture. Analysis devices from the GDR were used for that. For the investigations there was used as the zero sample a sludge which was not loaded with heavy metals, homogeneous and constantly dried at 105 °C. The drying bed sludge samples were treated with different heavy metal solutions with different concentrations. Preparation of samples, measuring conditions and general spectra are described. The measuring results of tests up to 100 g heavy metal in 1 kg dry substance are critically evaluated. The analysis of a sewer sludge sample takes only about ten minutes. There are determined: Cr, Ni, Cu, Zn, Mo, Cd, Hg and Pb.  相似文献   

12.
The effect of anaerobic co‐digestion of vegetable market waste and sewage sludge was studied extensively. The effects of co‐digestion were compared with the separate digestion of vegetable market waste and sewage sludge. The batch studies were carried out using three bench scale reactors having 1.5 L working volume. The cumulative biogas production shows that the organic waste available from the vegetable waste contains easily biodegradable organic matter compared with the sewage sludge. First order reaction kinetics is maintained throughout the methanation fermentation. The reductions in volatile solids (VS) in the three reactors were in the range of 63–65 %. The specific gas production for vegetable waste was higher (0.75 L biogas/g VSin and 1.17 L biogas/g VSdes) than for the sewage sludge (0.43 L biogas/g VSin and 0.68 L biogas/g VSdes). Consequently, the specific gas production for the co‐digestion of the mixture of vegetable waste and sewage sludge (0.68 L biogas/g VSin and 1.04 L biogas/g VSdes) was considerably higher than for the sewage sludge only. Batch kinetics of anaerobic digestion is useful in predicting the performance of digesters and for the design of appropriate digesters.  相似文献   

13.
The mixtures of dried sewage sludge (DSS) and sewage sludge ash were studied for removal of acid red 119 (AR119) dye as a new, more environmental friendly, and low cost adsorbent. For this purpose, response surface methodology was applied to optimize the dye removal efficiency and turbidity of treated dye solutions as two individual responses. Results revealed that an optimum condition under specified constraints (dye removal efficiency >95% and turbidity <50 NTU) was obtained at a contact time of 60 min, 40 wt% DSS in the mixture, an initial pH of 6, and an initial dye concentration of 200 mg dye/L in distilled water. Under the optimal condition, dye removal efficiency of 94.98% and effluent turbidity of 24.9 NTU was observed. In further studies, at optimum condition, the effect of some additives on adsorption process and desorption/reusability of adsorbent was investigated. It was observed that removal efficiency was significantly decreased to 83.76% when a simulated dye wastewater (containing the selected dye, acetic acid, and Glauber's salt dissolved in tap water) was used. Desorption studies revealed that AR119 dye could be well removed from dye‐loaded adsorbent by 0.3 M NaOH solution.  相似文献   

14.
In this study, a new material consisting of activated‐carbon‐containing magnetic oxide is prepared for assisted microwave (MW) irradiation treatment of coking wastewater. The optimum condition for degrading coking wastewater is 98.14% chemical oxygen demand (COD), under which 87.57% ammonia nitrogen (NH3–N) can be removed. The results are verified by GC–MS, showing that most organic pollutants can be adsorbed by modified activated carbon (MAC). The surface morphology and elemental composition of MAC before and after microwave irradiation and adsorption is determined by scanning electron microscopy. After microwave irradiation, many apertures of pores looked relatively large. It can be shown that MAC as a catalyst in the microwave‐assisted treatment process has many advantages, including rapid degradation of COD and NH3–N. In conclusion, microwave‐irradiation‐assisted MAC treatment of coking wastewater is a novel technology that is economical, efficient, and has broad prospects for development.  相似文献   

15.
A mathematical model has been produced to examine the impact of sewage sludge and fertilizer application to arable land and the effect of different crop regimes on the amount of nitrate leached to chalk groundwater. Previous work on nitrate leaching has concentrated on either a soil science or a hydrogeological approach with little overlap between the two. This study considered both fields to obtain an overall picture of the nitrate leaching process. IMPACT is a layered deterministic N-leaching model which predicts the nitrogen loads entering groundwater daily from arable land, and can be used as a management tool in development of sludge application and agricultural policy. The model relates nitrogen species movement resulting from the application of sewage sludge and fertilizer to differing vegetation-soil-hydrogeological conditions. Field data collected at three sites on the unconfined chalk aquifer of East Anglia, England over a two and a half year period was used to produce an initial conceptual model and to constrain the mathematical model during development. IMPACT simulates nitrogen and transport processes in the soil and unsaturated zone of the chalk. The nitrogen processes include: mineralisation of soil organic-N and sewage sludge organic-N, nitrification; crop uptake; volatilization; denitrification; and N inputs from fertilizers and precipitation. A mixing cell method is used to model solute transport in both the soil and chalk. Matrix flow and combined fissure-matrix flow are considered for the chalk. The model enables examination of the relationship between the arable/hydrogeological systems and the environmental implications of sludge application and of different arable regimes. Results are of use in developing strategies for arable farming and sludge application in areas sensitive to nitrate leaching. This Part 1 paper describes the model development approach. Results of associated modelling scenarios are presented separately in the associated Part 2 paper.  相似文献   

16.
Examination of the Degradation of Drugs in Municipal Sewage Plants Using Liquid Chromatography-Electrospray Mass Spectrometry Numerous drugs can be identified in the secondary effluent of municipal sewage plants. In order to obtain information about the degree of elimination (adsorption, aerobic degradation) of these compounds, a batch reactor containing different drugs in environmentally relevant concentrations and a suspension of activated sludge was coupled to a HPLC-MS-MS system. During a testing period of three days concentration-time-curves were recorded. For most of the examined drugs (acetamidoantipyrine, crotamiton, diclofenac, primidone, propyphenazone) solely a strong decrease of the initial concentration within the first 15 minutes was observed, which was interpreted primarily as adsorption to the activated sludge. For acetaminophenol and pentoxifyllin an additional slower decrease in concentration within several hours was observed. This slower elimination was interpreted to be caused mainly by primary degradation. It could be shown that dihydrocodeine is oxidized to hydrocodone in the batch reactor. The conjugate acetaminophen glucuronide was cleaved.  相似文献   

17.
Scum formation is a widespread problem in activated sludge nutrient removal plants. It often comes along with an excessive development of the filamentous bacterium “Microthrix parvicella” stabilizing the flotation process. As “M. parvicella” was found to depend on long‐chain fatty acids (LCFA) as sole carbon source not only in vitro but also in situ, some options of in‐situ substrate supply are discussed. Wastewater concentrations of fatty acids in the range of 2 to 15 mg L‐1 and homologue concentrations from synthetic surfactant degradation below 10 mg L‐1 rule out these substrates as source for excessive biomass production. They might, however, well be suitable for start‐up of a “M. parvicella” population. Build‐up of excessive biomass might rely on fatty acid supply originating in cell walls of lysed stationary phase bacteria of long residence time sludge fractions such as scum layers. Moreover, biogenic surfactants such as rhamnolipids have been proved to be an excellent carbon source for excessive biomass production in vitro.  相似文献   

18.
In a batch experiment with activated sludge from a large-scale plant the hydrolytical and biochemical degradation of dimethylformamide (DMF) and its reaction product dimethylamine (DMA) and the conversion connected with this under aerobic and anaerobic conditions is investigated. Parallel to the hydrolysis of DMF the biochemical degradation of DMA occurs. The extensive conversion of these substrates is followed by the nitrification of the ammoniumions formed, and under subsequent anaerobic conditions with methanol as the carbon source also denitrification can be achieved. If the oxygen supply of the activated sludge is insufficient, however, also DMA can be used as a carbon source for denitrification, ammonium-ions being released from DMA in addition. In the batch experiment the elimination rates referred to nitrogen were 7 … 14 mg/g · h for DMF, 0.8 … 1.7 mg/g · h for DMA, 0.3 … 0.6 mg/g · h for NH and 0.4 to 1.3 mg/g · h for nitrate in the presence of methanol. DMF and DMA are obviously not suitable as the only carbon source for denitrification.  相似文献   

19.
Development of national policy on sewage sludge management is a classic example of incremental policy formulation [Fiorino, D.J. 1995. Making Environmental Policy. University of California Press. Berkeley, CA. p. 269]. Consequently, policy has developed piecemeal, and results are, in some ways, different than intended. Land application of sewage sludge has not been a panacea. Many of the same types of policy are now being raised about it. We demonstrate this by examining the management of sewage materials by New York City from near the turn of the 20th century, when ocean dumping was viewed as a means to alleviate some of the gross pollution in New York Harbor, to when ocean dumping was banned, and thence to the present when sludge is applied to land as "biosolids." Lessons learned during this long, sometimes contentious history can be applied to present situations--specifically not understanding the long-term consequences of land-based reuse and disposal technologies.  相似文献   

20.
Methane fermentation is widely used to dispose of sewage sludge at wastewater treatment plants (WWTPs), due to production of renewable energy in the form of biogas. Antibiotics present in wastewater may accumulate in a sewage sludge. The aim of the present study is to investigate the impact of three antibiotics from different classes in three different doses on methane production from sewage sludge. For this purpose, metronidazole (MET), amoxicillin (AMO), and ciprofloxacin (CIP) are individually added to anaerobic reactors with sewage sludge collected from municipal WWTP. The antibiotics’ highest concentration (1024 mg kg?1 of AMO; 512 mg kg?1 of MET and CIP) lowers methane production and methane content in biogas. MET exerts the most marked effect and lowers methane production to 36.8 ± 3.7 mL CH4 kg?1 volatile solids. Tested antibiotics probably inhibit methanogenic archaea, which results in volatile fatty acids (VFAs) accumulation. Addition of MET results in accumulation of many kinds of VFAs with the highest concentration of acetic acid (17.52 ± 1.85 g L?1). The addition of of AMO results in accumulation of butyric acid only (253.00 ± 15.89 g L?1). However, addition of CIP results in accumulation of mainly acetic acid (7.58 ± 0.82 g L?1) and isovaleric acid (2.01 ± 0.41 g L?1). Next, synergistic effect of these antibiotics in a low concentration of 16 mg kg?1 of AMO, 8 mg kg?1 of MET, and 2 mg kg?1 of CIP is measured in semi‐continuous conditions and causes inbibition of methane production and accumulation of VFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号