首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Groundwater availability, management and protection are great challenges for the sustainability of groundwater resources in the scattered rural areas of the Atlantic regions of Europe where groundwater is the only option for water supply. This report presents a hydrogeological study of the coastal granitic area of Oia in northwestern Spain, which has unique geomorphological and hydrogeological features with steep slopes favoring the erosion of the weathered granite. The hydrogeological conceptual model of the study area includes: (1) the regolith layer, which is present only in the flat summit of the mountains; (2) the slope debris and the colluvial deposits, which are present in the intermediate and lowest parts of the hillside; (3) the marine terrace; and (4) the underlying fractured granite. Groundwater recharge from rainfall infiltration varies spatially due to variations in terrain slope, geology and land use. The mean annual recharge estimated with a hydrological water balance model ranges from 75 mm in the steepest zone to 135 mm in the lowest flat areas. Groundwater flows mostly through the regolith and the detrital formations, which have the largest hydraulic conductivities. Groundwater discharges in seepage areas, springs, along the main creeks and into the sea. The conceptual hydrogeological model has been implemented in a groundwater flow model, which later has been used to select the best pumping scenario. Model results show that the future water needs for domestic and tourist water supply can be safely provided with eight pumping wells with a maximum pumping rate of 700 m3/day.

  相似文献   

2.
The impacts of climate change and human pressure in groundwater have been greatest threats facing small islands. This paper represents a case study of groundwater responses towards the climate change and human pressures in Manukan Island Malaysia. SEAWAT-2000 was used for the simulations of groundwater response in study area. Simulations of six scenarios representing climate change and human pressures showed changes in hydraulic heads and chloride concentrations. Reduction in pumping rate and an increase in recharge rate can alter the bad effects of overdrafts in Manukan Island. In general, reduction in pumping rate and an increase in recharge rate are capable to restore and protect the groundwater resources in Manukan Island. Thus, for groundwater management options in Manukan Island, scenario 2 is capable to lessen the seawater intrusion into the aquifer and sustain water resources on a long-term basis. The selection of scenario 6 is the preeminent option during wet season. The output of this study provides a foundation which can be used in other small islands of similar hydrogeological condition for the purpose of groundwater resources protection.  相似文献   

3.
A transient finite difference groundwater flow model has been calibrated for the Nasia sub-catchment of the White Volta Basin. This model has been validated through a stochastic parameter randomization process and used to evaluate the impacts of groundwater abstraction scenarios on resource sustainability in the basin. A total of 1500 equally likely model realizations of the same terrain based on 1500 equally likely combinations of the data of the key aquifer input parameters were calibrated and used for the scenario analysis. This was done to evaluate model non-uniqueness arising from uncertainties in the key aquifer parameters especially hydraulic conductivity and recharge by comparing the realizations and statistically determining the degree to which they differ from each other. Parameter standard deviations, computed from the calibrated data of the key parameters of hydraulic conductivity and recharge, were used as a yardstick for evaluating model non-uniqueness. All model realizations suggest horizontal hydraulic conductivity estimates in the range of 0.03–78.4 m/day, although over 70 % of the area has values in the range of 0.03–14 m/day. Low standard deviations of the horizontal hydraulic conductivity estimates from the 1500 solutions suggest that this range adequately reflects the properties of the material in the terrain. Lateral groundwater inflows and outflows appear to constitute significant components of the groundwater budgets in the terrain, although estimated direct vertical recharge from precipitation amounts to about 7 % of annual precipitation. High potential for groundwater development has been suggested in the simulations, corroborating earlier estimates of groundwater recharge. Simulation of groundwater abstraction scenarios suggests that the domain can sustain abstraction rates of up to 200 % of the current estimated abstraction rates of 12,960 m3/day under the current recharge rates. Decreasing groundwater recharge by 10 % over a 20-year period will not significantly alter the results of this abstraction scenario. However, increasing abstraction rates by 300 % over the period with decreasing recharge by 10 % will lead to drastic drawdowns in the hydraulic head over the entire terrain by up to 6 m and could cause reversals of flow in most parts of the terrain.  相似文献   

4.
Mujib watershed is an important groundwater basin which is considered a major source for drinking and irrigation water in Jordan. Increased dependence on groundwater needs improved aquifer management with respect to understanding deeply recharge and discharge issues, planning rates withdrawal, and facing water quality problems arising from industrial and agricultural contamination. The efficient management of this source depends on reliable estimates of the recharge to groundwater and is needed in order to protect Mujib basin from depletion. Artificial groundwater recharge was investigated in this study as one of the important options to face water scarcity and to improve groundwater storage in the aquifer. A groundwater model based on the MODFLOW program, calibrated under both steady- and unsteady-state conditions, was used to investigate different groundwater management scenarios that aim at protecting the Mujib basin. The scenarios include variations of abstraction levels combined with different artificial groundwater recharge quantities. The possibilities of artificial groundwater recharge from existing and proposed dams as well as reclaimed municipal wastewater were investigated. Artificial recharge options considered in this study are mainly through injecting water directly to the aquifer and through infiltration from reservoir. Three scenarios were performed to predict the aquifer system response under different artificial recharge options (low, moderate, and high) which then compared with no action (recharge) scenario. The best scenario that provides a good recovery for the groundwater table and that can be feasible is founded to be by reducing current abstraction rates by 20% and implementing the moderate artificial recharge rates of 26 million(M)m3/year. The model constructed in this study helps decision makers and planners in selecting optimum management schemes suitable for such arid and semi-arid regions.  相似文献   

5.
乌鲁木齐河流域北部平原局部地区出现了地下水水位下降和生态环境退化等问题。为了实现地下水可持续开发利用,结合《乌鲁木齐市水资源综合规划报告》和《米东新区水资源规划报告》设计了现状开采方案、增加补给量方案、减少开采量方案和增加补给量与减少开采量联合方案。运用北部平原地下水非稳定流模型对这四个地下水开发情景模拟方案进行了模拟,模拟的时间段为2007~2050年。对预测期间地下水水位的动态变化、地下水水位降深及水均衡进行了分析,确定了增加补给量与减少开采量联合方案是乌鲁木齐河流域北部平原地下水的可持续开采方案。实施该方案应从北水南调引0.7×108m3/a地表水用于北部倾斜平原的农业灌溉,同时要减少地下水超采地区的地下水开采量0.50×108 m3/a。  相似文献   

6.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   

7.
 Only minor attention has been given in the past to the study of closed-basin hydrogeology in evaporitic environments, because these basins usually contain poor-quality groundwater. The motivation for hydrogeological research in the Los Monegros area in northeastern Spain was the approval in 1986 of a large irrigation project in the Ebre River basin. The irrigation of 60,000 ha is planned, partly in an evaporitic closed basin containing playa lakes. The project has given rise to environmental concerns. The evaluation of the hydrologic impacts of irrigation requires quantifying properly the hydrogeology of the area. With the available information, a conceptual hydrogeological model was formulated that identifies two main aquifers connected through a leaky aquitard. On the basis of the conceptual model, a numerical model was calibrated under steady-state conditions using the method of maximum-likelihood automatic parameter estimation (Carrera and Neuman, 1986a). The calibrated model reproduces the measured hydraulic heads fairly well and is consistent with independent information on groundwater discharge. By the solution of the inverse problem, reliable parameter estimates were obtained. It is concluded that anisotropy plays a major role in some parts of the lower aquifer. The geometric average of model conductivity is almost two orders of magnitude larger than the average conductivity derived from small-scale field tests. This scale effect in hydraulic conductivity is consistent with the findings of Neuman (1994) and Sánchez-Vila et al. (1996). Received, December 1997 · Revised, December 1997 · Accepted, January 1998  相似文献   

8.
云应盆地东北部属鄂北贫水地区,赋存于古近系—第四系含水层中的地下水是当地生产、生活用水的主要来源,亟需查明含水层的结构、含水层间地下水的转化关系等基本条件,为研究区内合理开发利用地下水提供依据。本研究通过野外水文地质调查、水文地质钻探工作,将研究区划分为单层含水层与双层含水层结构两个亚区(6个小区)。并通过地下水水位动态长期监测,获取了区内不同含水层的水位动态变化特征,分析各含水层之间的水力联系,建立了区域地下水转化的概念模式,即:研究区地下水以接受山前降雨入渗及风化裂隙水侧向径流补给为主,主要以水平径流的形式经古近系孔隙-裂隙含水层及第四系孔隙承压含水层往澴水方向运移,而后进入第四系孔隙潜水含水层。地下水和地表水在不同季节补排模式不同,雨季地表水(澴水)补给地下水,旱季地下水向地表水(澴水)排泄。古近系孔隙-裂隙水与上覆第四系孔隙水联系密切互为补给,共同构成具有统一水力联系的垂向多层结构的含水系统。独特的含水层结构决定了区内地下水接受降水补给的条件较差,地下水可开采资源量总体较贫乏,建议重点利用区域地表水资源,适度开发地下水资源,推进农业节水灌溉工程,实现水资源可持续利用。  相似文献   

9.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

10.
11.

Waterlogging (WL) refers to the process by which water flow is resisted in vertical and horizontal directions and thus water stagnates for a short or long span of time; it is induced by a combination of human and natural factors. In the southwestern region of Bangladesh, including Natore District, WL is a significant issue that needs to be addressed if agricultural activity is to be successful. This study aimed to identify surface WL in Natore District and to characterise the WL scenario in the study area in terms of hydrogeology. Waterlogged areas were identified with a geographic information system using satellite images corresponding to the premonsoon and postmonsoon periods. Using groundwater level data (1990–2017), the pre- and postmonsoon scenarios of the waterlogged areas were indicated by seasonal and perennial types of WL. Groundwater recharge scenarios were classified as long and short lag times. Most of the study area was characterised by thick clay or silty clay surficial layers with low water penetration rates, resulting from low porosity and low hydraulic conductivity. The cross-correlation between rainfall and groundwater level revealed the response of groundwater to rainfall, with a lag time of 1–5 months. Long lag time areas exhibited slow groundwater recharge and significant groundwater level fluctuation, with lower hydraulic conductivity values of 49.37–76.24 m/day. In contrast, short lag time areas displayed rapid groundwater recharge and small groundwater fluctuation due to a good proportional relationship with rainfall and higher hydraulic conductivity values of 74.74–117.79 m/day.

  相似文献   

12.

The Kosi Fan region of India and Nepal hosts a productive aquifer system. Regional hydrology is highly seasonal, and both groundwater and surface water are used for irrigation. Groundwater depletion is not currently occurring, but there is concern that plans to increase groundwater irrigation will reduce river baseflow, potentially affecting downstream water users. This study presents a model-based analysis of the impacts of groundwater withdrawal on dry-period streamflow and evaluation of management alternatives. A sensitivity analysis was performed in which a range of model parameters were tested around a best-estimate, base-case scenario. A high-reduction scenario was then developed which combined the factors that produced the greatest pumping-induced reduction in dry-season baseflow. Management strategies for 2.5, 5, and 10-km no-pumping buffers around the rivers were tested for the base-case and high-reduction scenarios. Simulations show that groundwater withdrawal equivalent to 30% and 60% of dry-season streamflow for the Kosi and Mahananda rivers, respectively, reduces the current dry-season flow by less than 4%. In the base-case scenario, simulated dry-season baseflow reduction is 1.8% and 2.6% for the rivers, respectively; these reduce to ~1% with a 2.5-km buffer zone. For the high-reduction scenario, dry-season baseflow reductions are 4.7% and 7.0% with no buffer; these reduce to 1.3% and 0.9% with a 5-km buffer for the Kosi and Mahananda rivers, respectively. The small reductions in baseflow relative to the total amount of pumping are due to a pumping-induced increase in rainfall recharge, thus the effects of additional pumping are mitigated.

  相似文献   

13.
利用稳定同位素方法识别内蒙古佘太盆地地下水补给来源   总被引:1,自引:1,他引:0  
刘君  王莹  卫文  张琳  刘福亮 《水文》2017,37(1):51-55
为研究近几十年来佘太盆地地下水补给变化情况,通过现场调查分析,对佘太盆地浅层地下水开展同位素样品采集工作,并测定了其氢、氧稳定同位素的值。在分析同位素分布特征及变化规律的基础上,结合当地地质及水文地质条件识别了地下水补给来源和补给区并构建了浅层地下水的补给模式图,探讨了区域上浅层地下水的补给流动状况。通过分析研究区大气降水和地下水中的氢氧稳定同位素的变化特征发现:当地大气降水并不是地下水的主要补给来源,其补给源区为周边山区,补给来源主要是周边山区的大气降水,且地下水所经历的蒸发作用较明显;盆地的东、西部地下水的补给源区不尽相同,西部的补给区高程要高于东部的补给区高程,但两部分地下水所经历的蒸发强度基本相同。  相似文献   

14.
鄂尔多斯白垩系地下水盆地水文地质概念模型   总被引:2,自引:0,他引:2  
张茂省  胡伏生  尹立河 《地质通报》2008,27(8):1115-1122
水文地质概念模型是地下水模拟与水资源评价的基础。为了构建地下水数值模拟模型,以鄂尔多斯白垩系地下水盆地为研究对象,以丰富翔实的勘查资料为依据,从白垩系地下水系统边界条件、水文地质结构、水流系统、水文地质参数、源汇项等方面进行概化,联合采用ArcGIS、RS、GMS同位素、基流分割、地质统计学、随机模拟等技术方法,建立了一组水文地质概念模型及其相应的空间离散表达,并讨论了地下水模拟面临的问题与发展趋势。  相似文献   

15.
Numerical groundwater models were used to assess groundwater sustainability on Jeju Island, South Korea, for various climate and groundwater withdrawal scenarios. Sustainability criteria included groundwater-level elevation, spring flows, and salinity. The latter was studied for the eastern sector of the island where saltwater intrusion is significant. Model results suggest that there is a need to revise the current estimate of sustainable yield of 1.77?×?106 m3/day. At the maximum extraction of 84  % of the sustainable yield, a 10-year drought scenario would decrease spring flows by 28 %, dry up 27 % of springs, and decrease hydraulic head by an island-wide average of 7 m. Head values are particularly sensitive to changes in recharge in the western parts of the island, due to the relatively low hydraulic conductivity of fractured volcanic aquifers and increased groundwater extraction for irrigation. Increases in salinity are highest under drought conditions around the current 2-m head contour line, with an estimated increase of up to 9 g/L under 100 % sustainable-yield use. The study lists recommendations towards improving the island’s management of potable groundwater resources. However, results should be treated with caution given the available data limitations and the simplifying assumptions of the numerical modeling approaches.  相似文献   

16.
Land use changes in peri-urban areas are usually associated with significant impacts on groundwater resources due to alteration of the recharge regime as well as through the establishment of pollution sources. Quantifying the aforementioned impacts and assessing the vulnerability of the groundwater resources is an important step for the better management and protection of the aquifers. In the present study, a physically based, distributed hydrologic model has been used to identify the impacts from specific land use change scenarios in the protected area of Loutraki catchment. A vulnerability assessment method has been also implemented to provide a decision support tool to the land planning authorities and also hydrologic mitigation measures for the sustainable development of the area have been proposed. The hydrologic impacts of the land use scenarios include a 5% reduction in the annual recharge of the study aquifer for scenario 1 (doubling of the current urban areas) and 7% decrease for scenario 2 (tripling of the current urban areas). Nevertheless, these impacts can be minimised if small-scale artificial recharge infrastructure is developed and the land planning measures suggested through the vulnerability and recharge maps will be followed.  相似文献   

17.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

18.
构建合理的水文地质概念模型对于地下水数值模拟至关重要,概念模型如果确定不合理,整个数值模拟将毫无意义。通常水文地质调查可以大致确定水文地质概念模型,然而对于一些不易被发现的补给源,通过水文地质调查也无法确定。水化学和同位素特征对地下水的补给源及水流路径有很好的指示作用,可以根据这些信息对水文地质概念模型进行细化。文章通过对研究区地下水取样,分析地下水水化学和同位素特征,确定出研究区内不易识别的地下水补给源及顶层黏土-粉质黏土的透水性,最终细化了水文地质概念模型边界条件。这对于后期得到正确的地下水流和溶质运移模拟结果具有重要意义。  相似文献   

19.
Shallow renewable groundwater sources have been used to satisfy the domestic needs and the irrigation in many parts of Saudi Arabia. Increased demand for water resulting from accelerated development activities has placed excess stress on the renewable sources especially in coastal aquifers of the western region of Saudi Arabia. It is expected that the current and future development activities will increase the rate of groundwater mining of the coastal aquifer near the major city Jeddah and surrounding communities unless management measures are implemented. The current groundwater development of Dahaban coastal aquifer located at alluvial fan at the confluence of three major Wadis is depleting the shallow renewable groundwater sources and causes deterioration of its quality. Numerical models are known tools to evaluate groundwater management scenarios under a variety of development options under different hydrogeological regimes. In this study, two models are applied—the MODFLOW for evaluating the hydrodynamic behaviors of the aquifer and MT3D salinity distribution to the costal aquifer near Dahaban town. The models’ simulation evaluates two development scenarios—the impact of excessive abstraction and the water salinity variation keeping abstraction at its current or increases in levels with or without groundwater recharge taking place. The simulation evaluated two scenarios covering a 25-year period—keeping the current abstraction at its current and the other scenario is increasing the well abstraction by 50% for dry condition (no recharge) and wet condition (with recharge). The analysis reveals that, under the first scenario, the continuation of the current pumping rates will result in depletion of the aquifer resulting in drying of many wells and quality deterioration at the level of 2,500 ppm. The results are associated with the corresponding salinity distribution in the region. Simulation of salinity in the region is a density-independent problem as salt concentration does not exceed 2,000 ppm, which is little value compared with sea salinity that amounts to 40,000 ppm. It is not recommended to increase the pumping rate than the current values. However, for the purpose of increasing water resources in the region, it is recommended to install new wells in virgin zones west of Dahaban main road. Maps of high/low potential groundwater and maps of salinity zones (more or less than 1,000 ppm) are provided and could be used to identify zones of high groundwater potential for the four studied scenarios. The implemented numerical simulation of Dahaban aquifer was undertaken to assess the water resources potential in order to reduce the depletion of sources in the future.  相似文献   

20.
To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the ‘crop water-requirement method’ are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号