首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fire disturbance in many tropical forests, including peat swamps, has become more frequent and extensive in recent decades. These fires compromise a variety of ecosystem services, among which mitigating global climate change through carbon storage is particularly important for peat swamps. Indonesia holds the largest amount of tropical peat carbon globally, and mean annual CO2 emissions from decomposition of deforested and drained peatlands and associated fires in Southeast Asia have been estimated at ∼2000 Mt y-1. A key component to understanding and therefore managing fire in the region is identifying the land use/land cover classes associated with fire ignitions. We assess the oft-asserted claim that escaped fires from oil palm concessions and smallholder farms near settlements are the primary sources of fire in a peat-swamp forest area in Central Kalimantan, Indonesia, equivalent to around a third of Kalimantan's total peat area. We use the MODIS Active Fire product from 2000 to 2010 to evaluate the fire origin and spread on the land use/land cover classes of legal, industrial oil palm concessions (the only type of legal concession in the study area), non-forest, and forest, as well as in relation to settlement proximity. We find that most fires (68–71%) originate in non-forest, compared to oil palm concessions (17%–19%), and relatively few (6–9%) are within 5 km of settlements. Moreover, most fires started within oil palm concessions and in close proximity to settlements stay within those boundaries (90% and 88%, respectively), and fires that do escape constitute only a small proportion of all fires on the landscape (2% and 1%, respectively). Similarly, a small proportion of fire detections in forest originate from oil palm concessions (2%) and within close proximity to settlements (2%). However, fire ignition density in oil palm (0.055 ignitions km−2) is comparable to that in non-forest (0.060 km-2 ignitions km-2), which is approximately ten times that in forest (0.006 ignitions km−2). Ignition density within 5 km of settlements is the highest at 0.125 ignitions km−2. Furthermore, increased anthropogenic activity in close proximity to oil palm concessions and settlements produces a detectable pattern of fire activity. The number of ignitions decreases exponentially with distance from concessions; the number of ignitions initially increases with distance from settlements, and, around from 7.2 km, then decreases with distance from settlements. These results refute the claim that most fires originate in oil palm concessions, and that fires escaping from oil palm concessions and settlements constitute a major proportion of fires in this study region. However, there is a potential for these land use types to contribute substantially to the fire landscape if their area expands. Effective fire management in this area should therefore target not just oil palm concessions, but also non-forested, degraded areas where ignitions and fires escaping into forest are most likely to occur.  相似文献   

2.
Tropical rainforests, naturally resistant to fire when intact, are increasingly vulnerable to burning due to ongoing forest perturbation and, possibly, climatic changes. Industrial-scale forest degradation and conversion are increasing fire occurrence, and interactions with climate anomalies such as El Niño induced droughts can magnify the extent and severity of fire activity. The influences of these factors on fire frequency in tropical forests has not been widely studied at large spatio-temporal scales at which feedbacks between fire reoccurrence and forest degradation may develop. Linkages between fire activity, industrial land use, and El Niño rainfall deficits are acute in Borneo, where the greatest tropical fire events in recorded history have apparently occurred in recent decades. Here we investigate how fire frequency in Borneo has been influenced by industrial-scale agricultural development and logging during El Niño periods by integrating long-term satellite observations between 1982 and 2010 – a period encompassing the onset, development, and consolidation of its Borneo’s industrial forestry and agricultural operations as well as the full diversity of El Niño events. We record changes in fire frequency over this period by deriving the longest and most comprehensive spatio-temporal record of fire activity across Borneo using AVHRR Global Area Coverage (GAC) satellite data. Monthly fire frequency was derived from these data and modelled at 0.04° resolution via a random-forest model, which explained 56% of the monthly variation as a function of oil palm and timber plantation extent and proximity, logging intensity and proximity, human settlement, climate, forest and peatland condition, and time, observed using Landsat and similar satellite data. Oil-palm extent increased fire frequency until covering 20% of a grid cell, signalling the significant influence of early stages of plantation establishment. Heighted fire frequency was particularly acute within 10 km of oil palm, where both expanding plantation and smallholder agriculture are believed to be contributing factors. Fire frequency increased abruptly and dramatically when rainfall fell below 200 mm month−1, especially as landscape perturbation increased (indicated by vegetation index data). Logging intensity had a negligible influence on fire frequency, including on peatlands, suggesting a more complex response of logged forest to burning than appreciated. Over time, the epicentres of high-frequency fires expanded from East Kalimantan (1980’s) to Central and West Kalimantan (1990’s), coincidentally but apparently slightly preceding oil-palm expansion, and high-frequency fires then waned in East Kalimantan and occurred only in Central and West Kalimantan (2000’s). After accounting for land-cover changes and climate, our model under-estimates observed fire frequency during ca. 1990–2002 and over-estimates it thereafter, suggesting that a multi-decadal shift to industrial forest conversion and forest landscapes may have diminished the propensity for high-frequency fires in much of this globally significant tropical region since ca. 2000.  相似文献   

3.
4.
The incidence of escaped agricultural fire has recently been increasing in the Western Amazon, driven by climate variability, land use change, and changes in patterns of residency and land occupation. Preventing and mitigating the negative impacts of fire in the Amazon require a comprehensive understanding not only of what the drivers of fire activity are, but also how these drivers interact and vary across scales. Here, we combine multi-scalar data on land use, climate, and landowner residency to disentangle the drivers of fire activity over 10 years (2001–2010) on individual landholdings in a fire-prone region of the Peruvian Amazon. We examined the relative importance of and interactions between climate variability (drought intensity), land occupation (in particular, landowner absenteeism), and land cover variables (cover of fallow and pasture) for predicting both fire occurrence (whether or not fire was detected on a farm in a given year) and fire size. Drought intensity was the most important predictor of fire occurrence, but land-cover type and degree of landowner absenteeism increased fire probability when conditions were dry enough. On the other hand, drought intensity did not stand out relative to other significant predictors in the fire size model, where degree of landowner absenteeism in a village and percent cover of fallow in a village were also strongly associated with fire size. We also investigated to what extent these variables measured at the individual landholding versus the village scale influenced fire activity. While the predictors measured at the landholding and village scales were approximately of equal importance for modeling fire occurrence, only village scale predictors were important in the model of fire size. These results demonstrate that the relative importance of various drivers of fire activity can vary depending on the scale at which they are measured and the scale of analysis. Additionally, we highlight how a full understanding of the drivers of fire activity should go beyond fire occurrence to consider other metrics of fire activity such as fire size, as implications for fire prevention and mitigation can be different depending on the model considered. Drought early warning systems may be most effective for preventing fire in dry years, but management to address the impacts of landowner absenteeism, such as bolstering community fire control efforts in high-risk areas, could help minimize the size of fires when they do occur. Thus, interventions should focus on minimizing fire size as well as preventing fires altogether, especially because fire is an inexpensive and effective management tool that has been in use for millennia.  相似文献   

5.
Climate Change and People-Caused Forest Fire Occurrence in Ontario   总被引:2,自引:0,他引:2  
Climate change that results from increasing levels of greenhouse gases in the atmosphere has the potential to increase temperature and alter rainfall patterns across the boreal forest region of Canada. Daily output from the Canadian Climate Centre coupled general circulation model (GCM) and the Hadley Centre's HadCM3 GCM provided simulated historic climate data and future climate scenarios for the forested area of the province of Ontario, Canada. These models project that in climates of increased greenhouse gases and aerosols, surface air temperatures will increase while seasonal precipitation amounts will remain relatively constant or increase slightly during the forest fire season. These projected changes in weather conditions are used to predict changes in the moisture content of forest fuel, which influences the incidence of people-caused forest fires. Poisson regression analysis methods are used to develop predictive models for the daily number of fires occurring in each of the ecoregions across the forest fire management region of Ontario. This people-caused fire prediction model, combined with GCM data, predicts the total number of people-caused fires in Ontario could increase by approximately 18% by 2020–2040 and50% by the end of the 21st century.  相似文献   

6.
明确气候变化背景下大兴安岭林区气候干湿状况特征,揭示其对森林火灾的影响,可为该区域森林火灾管理和森林资源保护提供科学依据。基于大兴安岭林区1974—2016年标准化降水指数(SPI),采用统计分析和对比分析方法,系统研究不同干湿情景对森林火灾发生次数及过火面积的影响,并讨论不同等级干旱对其影响的异同性。结果表明:1974—2016年,年、季尺度上大兴安岭林区气候均呈湿润化趋势。森林火灾发生次数多(少)和过火面积大(小)与气候的干湿状况(等级)基本一致,但森林火灾的发生次数与气候干湿状况相关更为密切。年尺度上,SPI与火灾次数呈负相关,与过火面积的自然对数则呈较弱的负相关;季尺度上,各季节SPI与对应的林火次数和过火面积自然对数均呈显著的负相关,但与过火面积的相关程度差异较大,以春季相关最为显著,秋季次之,夏季则相对较弱;不同季节SPI与年林火次数和过火面积自然对数呈负相关,前一年冬季SPI对当年火灾次数的贡献最大。可见,气候干湿状况对森林火灾的影响存在明显的滞后效应。SPI不仅能较好地反映区域气候的干湿状况,亦能较好地指示森林火灾发生的可能性及发生火灾的过火面积的相对变化情况,可为森林火灾预测和管理提供科学依据。  相似文献   

7.
Mountains are critical ecosystems that have a strong influence far beyond their topographic boundaries. More than 50 million people inhabit the Himalayas, and more than one billion people depend on the ecosystem services they provide. Anthropogenic activities have driven concurrent deforestation and regeneration in the Himalayas, and interventions to reduce forest loss and promote forest recovery require a synthetic understanding of the complex and interacting drivers of forest change. We conducted a systematic review of case studies from 1984 to 2020 (n = 137) and combined a system dynamics approach with a causal network analysis to identify, map and articulate the relationships between the drivers, actors and mechanisms of forest change across the entirety of the Himalayan mountain range. In total, the analysis revealed five proximate drivers, 12 underlying drivers, two institutional factors and five ‘other’ factors connected by a total of 221 linkages. Forest change dynamics have been dominated by widespread smallholder agriculture, extensive non-timber forest product extraction, widespread commercial and non-commercial timber extraction, and high rates of agricultural abandonment. Underlying drivers include population growth, poor agricultural productivity, international support for development projects, and successful community forest management systems. Contradictory linkages emerge from a combination of contextual factors, which can have negative impacts on conservation goals. Global processes such as shifts in governance, transnational infrastructure-development programs, economic slowdowns, labor migrations and climate change threaten to destabilize established dynamics and change forest trajectories. The underlying and proximate drivers interact through multiple pathways that can be utilized to achieve conservation goals. Based on this analysis, we highlight five thematic focus areas to curtail forest loss and promote recovery: (1) decreasing the population pressure, (2) sustainable increase of agricultural productivity, (3) strengthening of forest management institutions, (4) leveraging tourism growth and sustainable infrastructure expansion, and (5) fuel transition and establishing firewood plantations on degraded land. The broader adoption of systems thinking, and specifically a system dynamics approach and causal network analysis, will greatly enhance the rigour of policy development, help design site-specific interventions at multiple spatial scales which can respond to local and global changes, and guide deeper inquiry to enhance our understanding of driver-forest dynamics.  相似文献   

8.
Public concerns about environmental problems create narrative structures that influence policy by allocating roles of blame, responsibility, and appropriate behavior. This paper presents an analysis of public concerns about transboundary haze resulting from forest fires in Indonesia, Singapore, and Malaysia for crises experienced in 1997, 2005 and 2013. The source of the information is content analysis of 2231 articles from representative newspapers in each country. The study shows that newspaper reporting about haze has changed from a discussion of the potential health and economic impacts of fires resulting partly naturally from El Niño-induced droughts, toward an increasing vilification of Indonesia for not ratifying the 2002 Association of South East Asian Nations (ASEAN) Agreement on Transboundary Haze Pollution; plus criticism of Singaporean and Malaysian companies investing in palm oil plantations, and ASEAN. Attention to climate change and potential biodiversity loss linked to haze, however, remains low. The paper argues that newspaper analysis of public concerns, despite political influences on the press, offers insights into how public criticism is voiced in these countries, and how perceived responsibility for action is changing.  相似文献   

9.
We analyse the impact of climate interannual variability on summer forest fires in Catalonia (northeastern Iberian Peninsula). The study period covers 25 years, from 1983 to 2007. During this period more than 16000 fire events were recorded and the total burned area was more than 240 kha, i.e. around 7.5% of whole Catalonia. We show that the interannual variability of summer fires is significantly correlated with summer precipitation and summer maximum temperature. In addition, fires are significantly related to antecedent climate conditions, showing positive correlation with lagged precipitation and negative correlation with lagged temperatures, both with a time lag of two years, and negative correlation with the minimum temperature in the spring of the same year. The interaction between antecedent climate conditions and fire variability highlights the importance of climate not only in regulating fuel flammability, but also fuel structure. On the basis of these results, we discuss a simple regression model that explains up to 76% of the variance of the Burned Area and up to 91% of the variance of the number of fires. This simple regression model produces reliable out-of-sample predictions of the impact of climate variability on summer forest fires and it could be used to estimate fire response to different climate change scenarios, assuming that climate-vegetation-humans-fire interactions will not change significantly.  相似文献   

10.
Fire regime is affected by climate and human settlements. In the Mediterranean, the predicted climate change is likely to exacerbate fire prone weather conditions, but the mid- to long-term impact of climate change on fire regime is not easily predictable. A negative feedback via fuel reduction, for instance, might cause a non-linear response of burned area to fire weather. Also, the number of fires escaping initial control could grow dramatically if the fire meteorology is just slightly more severe than what fire brigades are prepared for. Humans can directly influence fire regimes through ignition frequency, fire suppression and land use management. Here we use the fire regime model FIRE LADY to assess the impacts of climate change and local management options on number of fires, burned area, fraction of area burned in large fires and forest area during the twenty-first century in three regions of NE Spain. Our results show that currently fuel-humidity limited regions could suffer a drastic shift of fire regime with an up to 8 fold increase of annual burned area, due to a combination of fuel accumulation and severe fire weather, which would result in a period of unusually large fires. The impact of climate change on fire regime is predicted to be less pronounced in drier areas, with a gradual increase of burned area. Local fire prevention strategies could reduce but not totally offset climate induced changes in fire regimes. According to our model, a combination of restoring the traditional rural mosaic and classical fire prevention would be the most effective strategy, as a lower ignition frequency reduces the number of fires and the creation of agricultural fields in marginal areas reduces their extent.  相似文献   

11.
以吉林省为例,利用该省1952—2010年森林火灾(简称林火,下同)次数资料和全省气象站资料,分析该省林火次数时间变化特征及其与气象条件的关系,利用水分平衡法和统计回归方法建立林火次数气候影响评价模型并对其进行比较;在此基础上,利用水分平衡模型建立林火指数时间变化序列。结果表明,林火次数与降水、相对湿度、气温、风速等气象因子关系密切,水分平衡模型的气候影响评价效果优于统计回归模型;近62 a来吉林省林火指数和次数均呈增加趋势,表明气候变化有利于林火发生;2000年之后进入春、秋季林火多发期。  相似文献   

12.
Payment for Ecosystem Services (PES) schemes are proliferating but are challenged by insufficient attention to spatial and temporal inter-dependencies, interactions between different ecosystems and their services, and the need for multi-level governance. To address these challenges, this paper develops a place-based approach to the development and implementation of PES schemes that incorporates multi-level governance, bundling or layering of services across multiple scales, and shared values for ecosystem services. The approach is evaluated and illustrated using case study research to develop an explicitly place-based PES scheme, the Peatland Code, owned and managed by the International Union for the Conservation of Nature’s UK Peatland Programme and designed to pay for restoration of peatland habitats. Buyers preferred bundled schemes with premium pricing of a primary service, contrasting with sellers’ preferences for quantifying and marketing services separately in a layered scheme. There was limited awareness among key business sectors of dependencies on ecosystem services, or the risks and opportunities arising from their management. Companies with financial links to peatlands or a strong environmental sustainability focus were interested in the scheme, particularly in relation to climate regulation, water quality, biodiversity and flood risk mitigation benefits. Visitors were most interested in donating to projects that benefited wildlife and were willing to donate around £2 on-site during a visit. Sellers agreed a deliberated fair price per tonne of CO2 equivalent from £11.18 to £15.65 across four sites in Scotland, with this range primarily driven by spatial variation in habitat degradation. In the Peak District, perceived declines in sheep and grouse productivity arising from ditch blocking led to substantially higher prices, but in other regions ditch blocking was viewed more positively. The Peatland Code was developed in close collaboration with stakeholders at catchment, landscape and national scales, enabling multi-level governance of the management and delivery of ecosystem services across these scales. Place-based PES schemes can mitigate negative trade-offs between ecosystem services, more effectively include cultural ecosystem services and engage with and empower diverse stakeholders in scheme design and governance.  相似文献   

13.
气候变化对林火动态的影响研究进展   总被引:9,自引:0,他引:9       下载免费PDF全文
气候变化对林火动态的影响一直是国内外研究的热点,从数据获取方式、研究内容、研究方法和研究结论等角度出发对此领域的进展进行了综述。当前以气候变暖为主要特征的气候变化已对林火动态产生重要影响,全球大部分地区林火发生频率增大、林火强度增强;在预期继续变暖的气候背景下,未来林火情势会更加严峻;但由于气候变化的区域性差异,有些地区的林火动态变化不明显或呈现下降趋势。对预期气候情景下研究结论的不确定性进行了分析,并讨论了我国与国外在此领域的研究差距及其原因。最后,对未来的研究方向进行了展望。  相似文献   

14.
The aim of this work was to study the forest fire potential and frequency of forest fires under the projected climate change in Finland (N 60°–N 70°). Forest fire index, generally utilized in Finland, was used as an indicator for forest fire potential due to climatological parameters. Climatic scenarios were based on the A2 emission scenario. According to the results, the forest fire potential will have increased by the end of this century; as a result of increased evaporative demand, which will increase more than the rise in precipitation and especially in southern Finland. The annual number of forest fire alarm days is expected to increase in southern Finland to 96–160 days by the end of this century, compared to the current 60–100 days. In the north, the corresponding increase was from 30 to 36 days. The expected increase in the annual frequency of forest fires over the whole country was about 20% by the end of this century compared to the present day. The greatest increase in the frequency of fires, per 1,000 km2, was in the southernmost part of the country, with six to nine fires expected annually per 1,000 km2 at the end of this century, meaning a 24–29% increase compared to the present day frequencies.  相似文献   

15.
Summary We analyse trends over the past 32 years in drought variables in the context of forest fire research and climate change in Ticino, Southern Switzerland. January to April and in particular the month of March have become drier. This is the time of the year when forest fires are most frequent. Our results show an increasing trend in all climatic variables favourable to drought and forest fires, including the length of episodes without precipitation, sunshine duration and temperature, and a decrease in relative humidity. The only exception is the number of “foehn” days, which have not significantly increased.  相似文献   

16.
Investigations of the ecological, atmospheric chemical, and climatic impacts of contemporary fires in tropical vegetation have received increasing attention during the last 10 years. Little is known, however, about the impacts of climate changes on tropical vegetation and wildland fires. This paper summarizes the main known interactions of fire, vegetation, and atmosphere. Examples of predictive models on the impacts of climate change on the boreal and temperate zones are given in order to highlight the possible impacts on the tropical forest and savanna biomes and to demonstrate parameters that need to be involved in this process. Response of tropical vegetation to fire is characterized by degradation towards xerophytic and pyrophytic plant communities dominated by grasses and fire-tolerant tree and bush invaders. The potential impacts of climate change on tropical fire regimes are investigated using a GISS GCM-based lightning and fire model and the Model for the Assessment of Greenhouse Gas-Induced Climate Change (MAGICC).  相似文献   

17.
内蒙古大兴安岭林区雷击火灾气候成因分析   总被引:2,自引:1,他引:1  
利用常规天气图、数值预报产品、卫星云图以及溃变理论的预报工具V-3θ图,对2005年6月30日至7月2日发生在青藏高原东北侧甘肃省区域性持续暴雨天气过程进行了诊断应用综合分析.结果表明:副热带高压西伸北抬外围西南风气流控制青藏高原东北侧,当东北低涡、西风带的冷空气与西南风交汇时,触发强对流;850~200hPa有深厚的水汽层;700 hPa稳定的低涡切变为暴雨提供了强烈持续的辐合上升运动;卫星云图表明持续性暴雨由多个相继生消的中尺度对流系统影响造成的.基于溃变理论的预报方法在西北区域性持续暴雨的起报、结束及落区有很好的预测能力.  相似文献   

18.
The Russian boreal forest contains about 25% of the global terrestrial biomass, and even a higher percentage of the carbon stored in litter and soils. Fire burns large areas annually, much of it in low-severity surface fires – but data on fire area and impacts or extent of varying fire severity are poor. Changes in land use, cover, and disturbance patterns such as those predicted by global climate change models, have the potential to greatly alter current fire regimes in boreal forests and to significantly impact global carbon budgets. The extent and global importance of fires in the boreal zone have often been greatly underestimated. For the 1998 fire season we estimate from remote sensing data that about 13.3 million ha burned in Siberia. This is about 5 times higher than estimates from the Russian Aerial Forest Protection Service (Avialesookhrana) for the same period. We estimate that fires in the Russian boreal forest in 1998 constituted some 14–20% of average annual global carbon emissions from forest fires. Average annual emissions from boreal zone forests may be equivalent to 23–39% of regional fossil fuel emissions in Canada and Russia, respectively. But the lack of accurate data and models introduces large potential errors into these estimates. Improved monitoring and understanding of the landscape extent and severity of fires and effects of fire on carbon storage, air chemistry, vegetation dynamics and structure, and forest health and productivity are essential to provide inputs into global and regional models of carbon cycling and atmospheric chemistry.  相似文献   

19.
Over the last few decades, numerous initiatives have advanced forest landscape restoration in the Amazon, and in 2015 the Brazilian government set an ambitious, still-valid, target to restore 4.8 million hectares of degraded Amazonian land by 2030. This has contributed to an emergent global restoration network that connects multiple stakeholders and processes for funding, implementing and monitoring restoration actions in such a way that prepares various ecosystem services for market integration. The network arose in tandem with the evolution of an institutional framework that includes regulatory requirements within Brazil, global commitments linked to climate change mitigation, corporate sustainability strategies, and the growth of crowd-sourcing activism. This paper presents restoration activities as embedded within a Global Production Network (GPN) for an ecosystem service, which we use as a heuristic device to inform our understanding of emergent environmental governance structures. The resulting multi-scalar, networked mode of environmental governance is presented as a web-like structure co-created by institutional evolution, actor-specific strategies, and interactions between firms and non-firm actors. The article pays particular attention to a case study of how the restoration network manifests territorially in the Upper Xingu region of the Brazilian Amazon. Despite the strong North-South orientation of dominant funding relationships, network governance is also seen to be relational. This is evident from the dissemination of ideas, supply models and seeding techniques from Upper Xingu to other regions of Brazil. These insights could be applied to improve landscape restoration outcomes, and indeed the provisioning of ecosystem services more broadly.  相似文献   

20.
基于自然的解决方案(NbS)是近10年提出的人类社会应对一系列环境和社会挑战的成本有效的方式,但直到近期才在国际社会引起重视。针对气候变化,NbS指通过对生态系统的保护、恢复和可持续管理减缓气候变化,同时利用生态系统及其服务功能帮助人类和野生生物适应气候变化带来的影响和挑战。这些生态系统包括森林、农田、草地、湿地(海岸带)生态系统,人工的或天然的。NbS能够为实现《巴黎协定》目标贡献30%左右的减排潜力,同时带来巨大的环境和社会经济的协同效益。但是,在过去的气候变化政策和行动中,包括国家自主贡献(INDC),NbS尚未得到充分的重视,流入NbS相关的气候资金明显不足。为充分发挥NbS的潜力,建议开展中国NbS减排潜力及其协同效应研究,识别成本有效的中国NbS优先领域,梳理国际国内NbS成功案例,制定推动NbS主流化相关激励政策,推动多领域NbS协同治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号