首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
In the present research, laundry wastewater treatment is studied using the electrocoagulation/electroflotation process. For the optimization of treatment conditions such as electrode type (Al–Al, Al–Fe, Fe–Fe, and Fe–Al), initial pH (5–9), current (0.54–2.16 A), and application time (15–60 min), response surface methodology is used. Removal efficiencies of chemical oxygen demand (COD), color, anionic surfactant, microplastic, and phosphate are studied. It is determined that the most effective removal is obtained with 2.16 A current, pH 9, and 60 min reaction time using Fe–Al electrode. Here, 91%, 94%, 100%, and 98% removal efficiencies are achieved for COD, surfactant, color, and microplastic, respectively. The operating cost of the combined process is calculated as $1.32 m?3 for the optimum removal parameters. The adsorption kinetics study shows that the removal follows second‐order kinetics. The laboratory‐scale test results indicate that the electrocoagulation/electroflotation process is feasible for the treatment of laundry wastewater.  相似文献   

2.
In this research, the efficiency of electrocoagulation treatment process using aluminum electrodes to treat synthetic wastewater containing Reactive Red198 (RR198) was studied. The effects of parameters such as voltage, time of reaction, electrode connection mode, initial dye concentration, electrolyte concentration, and inter electrode distance on dye removal efficiency were investigated. In addition, electrical energy consumption, electrode consumption, and operating cost at optimum condition have been investigated. The results showed that dye and chemical oxygen demand removals were 98.6 and 84%, respectively. Electrode consumption, energy consumption and operating cost were 0.052 kg/m3, 1.303 kWh/m3 and 0.256 US$/m3, respectively. Dye removal kinetic followed first order kinetics. It can be concluded that electrocoagulation process by aluminum electrode is very efficient and clean process for reactive dye removal from colored wastewater.  相似文献   

3.
4.
5.
The objective of this study was to investigate the effect of salt concentration on performance of a membrane bioreactor (MBR) for treating an olefin plant wastewater. For this purpose, a lab‐scale submerged MBR with a flat‐sheet ultrafiltration membrane was used for treatment of synthetic wastewater according to oxidation and neutralization unit of olefin plant. The synthetic wastewater was adjusted to have 500 mg/L chemical oxygen demand (COD). Trials on different concentrations of sodium sulfate (Na2SO4) (0–20 000 ppm) in the feed were conducted under aerobic conditions in the MBR. The results showed that increasing the salt concentrations causes an increase in the effluent COD, phenol, and oil concentrations. These results are due to reduction of the membrane filtration efficiency and also decline in the microbial activity that it is indicated by decreasing the sOUR in MBR. But in all the trials, the effluent COD and oil concentration was well within the local discharge limit of 100 and 10 mg/L, respectively. These results indicate that the MBR system is highly efficient for treating the olefin plant wastewater, and although high salt concentrations decreased organic contaminant removal rates in the MBR, the effluent still met the discharge limits for treating the olefin plant wastewater.  相似文献   

6.
This paper presents a field investigation of aromatic volatile organic compounds (AVOCs) emissions from a sequence batch reactor (SBR) with powdered activated carbon (PAC) to treat the wastewater in a large petroleum refinery plant. AVOC with high Henry's constant preferred to transfer from liquid‐phase into air‐phase so that might cause the emission and odor problem. During SBR operation, AVOC concentrations and distributions in wastewater, sludge and off‐gas were analyzed. The total AVOC removal from wastewater was >99% under the kinetic parameters of SBR operated. Batch experiments were carried out in the laboratory to obtain the adsorptive characteristic of AVOC onto PAC, but the results showed that bio‐degradation was the main removal mechanism (85%). Nevertheless, off‐gas emission (<1%) and AVOC in the sludge (<0.1%) remained a stable level. Oxidation/reduction potential (ORP) was correlated to the logarithm of the dissolved oxygen (DO) concentration in a linear relationship so that ORP profile could indirectly reflect the DO and biomass concentrations. Since the influent AVOC concentration was varied and difficultly to measure, ORP could be used as real‐time parameter for optimizing SBR operation. The results provided useful information for future evaluation of AVOC emissions from wastewater treatment plants.  相似文献   

7.
针对太湖水体交换周期近十余年发生的变化,本文收集整理了1986-2018年太湖水文巡测、汛期水文巡测数据以及太湖流域沿江城市引水量、流域降雨量变化数据,基于太湖出入湖水量的变化研究了太湖水体交换周期的变化及原因,并对交换周期变化对水质空间格局的影响进行分析.结果 表明:太湖入湖水量有显著上升,2007年以来平均每年入湖...  相似文献   

8.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

9.
沉积层放射性生热的热流贡献(沉积层热流)是沉积盆地大地热流的重要组成部分,能够有效促进中国西部“冷”盆深层-超深层烃源岩的增温和热演化.本文利用不同的自然伽马(GR)-生热率(A)经验关系式分别计算了准噶尔盆地不同构造单元16口钻孔共6120个沉积层生热率,通过与实测生热率的统计对比,确定了适用于研究区的GR-A经验关系,建立了准噶尔盆地地层生热率柱,据此计算了研究区沉积层热流贡献,并以盆参2井为例定量分析了沉积层热流的增温效应.结果表明,准噶尔盆地沉积层平均生热率为1.179±0.339 μW·m-3,总体上随着时代变老,沉积层生热率呈现出递减趋势.准噶尔盆地沉积层热流平均为7.9±4.9 mW·m-2,约占地壳热流的29.2%和大地热流的19.6%,区域上与盆地沉积层厚度大体一致,表现为中央坳陷最高,北天山山前冲断带变化较大,陆梁隆起和西部隆起次之,东部隆起和乌伦古坳陷最低.沉积层热流能够有效增高深层—超深层烃源层受热温度,促进有机质热演化,如在考虑和忽略沉积层生热的两种情况下计算的盆参2井下侏罗统三工河组烃源岩底部(5300 m)温度差异最大为7.3 ℃,这显然对于地温梯度小、主体油气藏埋深大的准噶尔盆地油气资源评价和勘探目标优选具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号