首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
西北印度洋的洋脊系统目前以"中印度洋脊"和"卡尔斯伯格脊"分别指示南北两段,两者的分界点被认为是澳大利亚板块与印度板块的板块边界与洋脊的交点,但具体分布位置不明确.基于已有的地质、地球物理和地球化学等多方面特征,认为卡尔斯伯格脊和中印度洋脊可以统一称为"西北印度洋脊",从罗德里格斯三联点一直延伸到欧文断裂带.新的洋脊厘定将有助于更全面地了解整个西北印度洋的洋脊演化和地球动力学过程.西北印度洋脊地形上南北两端断裂较少,中间断层密集,形似吸管的弯折部位,调节洋脊的转向.重力异常显示沿脊轴方向两端高中间低的特征,表明两端岩浆供给相对充足,而中间断层密集区岩浆量少.磁异常特征显示清晰的分带性,指示多阶段的洋脊扩张历史.岩石地球化学特征显示南北两个同位素相对富集洋脊段,可能与热点作用相关,或与残留岩石圈或地壳物质对亏损软流圈地幔的富集改造有关.  相似文献   

2.
We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively.  相似文献   

3.
The morphotectonic features of the Central Indian Ocean Basin (CIOB) provide information regarding the development of the basin. Multibeam mapping of the CIOB reveals presence of abundant isolated seamounts and seamount chains sub-parallel to each other and major fracture zones along 73° E, 79° E and 75°45′ E. Morphological analyses were carried out for 200 seamounts that occur either as isolated edifies or along eight sub-parallel chains. The identified eight parallel seamount chains that trend almost north–south and reflecting the absolute motion of the Indian plate, probably originated from the ancient propagative fractures. Inspite of the differences in their height, the seamounts of these eight chains are morphologically correlatable. In the study area the seamounts are clustered north and south of 12° S latitude. Interestingly, in the area north of 12° S (area II: 9°–12° S) the seamounts are distinctly smaller (≤ 400 m height) whereas, the area south of 12° S (area I: 12°–15° S) has a mixed population of seamounts. The normalized abundance of the CIOB seamount is 976 seamounts/106 km2 but on a finer scale this value varies from 500 to 1600 seamounts/106 km2, which is less than the seamount concentrations of the Pacific and Atlantic oceans (9000 to 16,000 seamounts/106 km2). Three categories of seamounts are present in the CIOB e.g. (1) single-peaked (2) multi-peaked and (3) composite. The study indicate that single-peaked seamounts are dominant (89%) while multi-peaked is less (8%) and composite ones are rare (3%) in the CIOB.The progressive northward movement of the Indian continent caused collision between India and Asia at around 62 Ma ago. A majority of the near-axis originated seamounts in the CIOB seemed to have formed as a consequence of the temporally widespread (Cretaceous  65 Ma to late Eocene < 49 Ma) collision between India and Eurasia. The regional stress patterns in the Indian plate vary N to NE in the continent and N to NW in Indian Ocean areas. The combined effect of the regional stress patterns maintained the orientation of the seamount chains and the local stress regime helped in the upwelling of magma and formation of seamounts. The low heat flow, morphological features and geochemical signature indicate that the morphotectonic structures formed contemporaneously with the oceanic crust.  相似文献   

4.
The warm pool in the Indian Ocean   总被引:2,自引:0,他引:2  
The structure of the warm pool (region with temperature greater than 28°C) in the equatorial Indian Ocean is examined and compared with its counterpart in the Pacific Ocean using the climatology of Levitus. Though the Pacific warm pool is larger and warmer, a peculiarity of the pool in the Indian Ocean is its seasonal variation. The surface area of the pool changes from 24 × 106 km2 in April to 8 × 106 km2 in September due to interaction with the southwest monsoon. The annual cycles of sea surface temperature at locations covered by the pool during at least a part of the year show the following modes: (i) a cycle with no significant variation (observed in the western equatorial Pacific and central and eastern equatorial Indian Ocean), (ii) a single maximum/minimum (northern and southern part of the Pacific warm pool and the south Indian Ocean), (iii) two maxima/minima (Arabian Sea, western equatorial Indian Ocean and southern Bay of Bengal), and (iv) a rapid rise, a steady phase and a rapid fall (northern Bay of Bengal).  相似文献   

5.
The Central Indian Tectonic Zone (CITZ) is a Proterozoic suture along which the Northern and Southern Indian Blocks are inferred to have amalgamated forming the Greater Indian Landmass. In this study, we use the metamorphic and geochronological evolution of the Gangpur Schist Belt (GSB) and neighbouring crustal units to constrain crustal accretion processes associated with the amalgamation of the Northern and Southern Indian Blocks. The GSB sandwiched between the Bonai Granite pluton of the Singhbhum craton and granite gneisses of the Chhotanagpur Gneiss Complex (CGC) links the CITZ and the North Singhbhum Mobile Belt. New zircon age data constrain the emplacement of the Bonai Granite at 3,370 ± 10 Ma, while the magmatic protoliths of the Chhotanagpur gneisses were emplaced at c. 1.65 Ga. The sediments in the southern part of the Gangpur basin were derived from the Singhbhum craton, whereas those in the northern part were derived dominantly from the CGC. Sedimentation is estimated to have taken place between c. 1.65 and c. 1.45 Ga. The Upper Bonai/Darjing Group rocks of the basin underwent major metamorphic episodes at c. 1.56 and c. 1.45 Ga, while the Gangpur Group of rocks were metamorphosed at c. 1.45 and c. 0.97 Ga. Based on thermobarometric studies and zircon–monazite geochronology, we infer that the geological history of the GSB is similar to that of the North Singhbhum Mobile Belt with the Upper Bonai/Darjing and the Gangpur Groups being the westward extensions of the southern and northern domains of the North Singhbhum Mobile Belt respectively. We propose a three‐stage model of crustal accretion across the Singhbhum craton—GSB/North Singhbhum Mobile Belt—CGC contact. The magmatic protoliths of the Chhotanagpur Gneisses were emplaced at c. 1.65 Ga in an arc setting. The earliest accretion event at c. 1.56 Ga involved northward subduction and amalgamation of the Upper Bonai Group with the Singhbhum craton followed by accretion of the Gangpur Group with the Singhbhum craton–Upper Bonai Group composite at c. 1.45 Ga. Finally, continent–continent collision at c. 0.96 Ga led to the accretion of the CGC with the Singhbhum craton–Upper Bonai Group–Gangpur Group crustal units, synchronous with emplacement of pegmatitic granites. The geological events recorded in the GSB and other units of the CITZ only partially overlap with those in the Trans North China Orogen and the Capricorn Orogen of Western Australia, indicating that these suture zones are not correlatable.  相似文献   

6.
The Indian monsoon carries large amounts of freshwater to the northern Indian Ocean and modulates the upper ocean structure in terms of upwelling and productivity. Freshwater-induced stratification in the upper ocean of the Bay of Bengal is linked to the changes in the Indian monsoon. In this study, we test the usefulness of δ18O and δ13C variability records for Globigerina bulloides and Orbulina universa to infer Indian monsoon variability from a sediment core retrieved from the southwestern Bay of Bengal encompassing the last 46 kyr record. Results show that the northeast monsoon was dominant during the Last Glacial Maximum. Remarkable signatures are observed in the δ18O and δ13C records during the Marine Isotope Stage (MIS) 3 to MIS-1. Our study suggests that Indian monsoon variability is controlled by a complex of factors such as solar insolation, North Atlantic climatic shifts, and coupled ocean–atmospheric variability during the last 46 kyr.  相似文献   

7.
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used. The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan, and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events. The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming that strong IOD events indeed affect the Indian summer monsoon.
Karumuri AshokEmail:
  相似文献   

8.
The formation and evolution of the ~600 km long arcuate Amirante Ridge and Trench Complex (ARTC) is a significant geomorphic–structural feature in the Western Indian Ocean (WIO). The WIO contains evidence of at least two major magmatic episodes followed by continental rifting within the span of a little more than 20 million years. This involved the splitting of Madagascar from India at around 85 Ma and then separation between India and the Seychelles at 64–63 Ma as a possible consequence of two powerful volcanic eruptions from the Marion and Reunion hot spots, respectively. Formation and evolution of the ARTC represents this tumultuous period in the Indian Ocean, approximately between 85 and 60 Ma (Late Cretaceous–Early Tertiary).

We integrated geophysical, palaeomagnetical, and petrological data to examine three existing models that attempt to explain the formation of ARTC. In contrast, our study hints at several stages of extension and compression responsible for its formation. Our integrated data also suggest that the Carlsberg Ridge may have played a prominent role in the evolution of the ARTC that seems to have formed through a ridge-jump process after the conjugate spreading centres – Mascarene and Palitana ridges formed earlier during the India–Madagascar separation – ceased spreading because of violent eruption of the Reunion hot spot at around 65 Ma. The eruption disturbed the plumbing system of magma ascent, resulting in cessation of spreading along the conjugate spreading centres, forcing a ridge jump.

A collage of seismic refraction and reflection, free-air gravity, magnetic anomaly data, and Ar dating of rocks indicates that as the Carlsberg Ridge swept the Seychelles towards south, the crust between Madagascar and the Seychelles was increasingly compressed, with the abandoned northern Mascarene spreading centre absorbing the maximum stress. With continued compression, the western limb of the abandoned spreading ridge was thrust below the eastern limb to a limited degree. This partial subduction agrees with the gravity and seismic results. Our new study also accounts for the anomalous presence of 14 km-thick oceanic crust beneath the ARTC and its characteristic difference in petrology with other established subduction zones in the world.  相似文献   

9.
An attempt has been made to understand the Pleistocene bottom water history in response to the paleoclimatic changes in the northern Indian Ocean employing quantitative analyses of deep sea benthic foraminifera at the DSDP sites 219 and 238. Among the 150 benthic foraminifera recorded a few species show dominance with changing percent frequencies during most of the sequence. The dominant benthic foraminiferal assemblages suggest that most of the Pleistocene bottom waters at site 219 and Early Pleistocene bottom waters at site 238 are of North Indian Deep Water (NIDW) origin. However, Late Pleistocene assemblage at site 238 appears to be closely associated with a water mass intermediate between North Indian Deep Water (NIDW) and Antarctic Bottom Water (AABW). Uvigerina proboscidea is the most dominant benthic foraminiferal species present during the Pleistocene at both the sites. A marked increase in the relative abundance ofU. proboscidea along with less diverse and equitable fauna during Early Pleistocene suggests a relative cooling, an intensified oceanic circulation and upwelling of nutrient rich bottom waters resulting in high surface productivity. At the same time, low sediment accumulation rate during Early Pleistocene reveals increased winnowing of the sediments possibly due to more corrosive and cold bottom waters. The Late Pleistocene in general, is marked by relatively warm and stable bottom waters as reflected by low abundance ofU. proboscidea and more diverse and equitable benthic fauna. The lower depth range for the occurrence ofBulimina aculeate in the Indian Ocean is around 2300 m, similar to that of many other areas.B. aculeata also shows marked increase in its abundance near the Pliocene/Pleistocene boundary while a sudden decrease in the relative abundance ofStilostomella lepidula occurs close to the Early/Late Pleistocene boundary.  相似文献   

10.
The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80–73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80–73 Ma, close to the India–Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6–13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25–35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be unrelated as they were formed by different mantle sources, and that the proximity of the southern end of the 85°E Ridge to the ANS is coincidental.  相似文献   

11.
The volcanics from the Ninety East Ridge in the Indian Ocean consist of basalts and oceanic andesites. The basalts from the Ninety East Ridge differ from the Mid-Indian Oceanic Ridge basalts in their higher pyroxene content, their higher Fe2O3 + FeO content (>11%), higher TiO2 content (2–3%), and variable K2O content (0.2–1.5%). Volcanics from other aseismic ridges, i.e. the Cocos, the Iceland-Faeroe and the Walvis ridges, show a trend of differentiation which has progressed further than is commonly encountered on mid-oceanic ridge rocks. The Ninety East and the Iceland-Faeroe ridges contain mildly tholeiitic basalts and oceanic andesites while the Walvis and the Cocos Ridges consist of plagioclase-alkali basalts, trachybasalts and trachytes. The majority of basalts found on aseismic ridges have a higher total iron oxide content (>11%) and a more variable K2O (2–3%) and TiO2 (1.5–4%) content than mid-oceanic ridge basalts. The type of volcanism encountered on aseismic ridges is similar to that of the islands which are near or associated with the ridges.  相似文献   

12.
In order to investigate whether geochemical, physiographic and lithological differences in two end‐member sedimentary settings could evoke varied microbe–sediment interactions, two 25 cm long sediment cores from contrasting regions in the Central Indian Basin have been examined. Site TVBC 26 in the northern siliceous realm (10°S, 75·5°E) is organic‐C rich with 0·3 ± 0·09% total organic carbon. Site TVBC 08 in the southern pelagic red clay realm (16°S, 75·5°E), located on the flank of a seamount in a mid‐plate volcanic area with hydrothermal alterations of recent origin, is organic‐C poor (0·1 ± 0·07%). Significantly higher bacterial viability under anaerobic conditions, generally lower microbial carbon uptake and higher numbers of aerobic sulphur oxidizers at the mottled zones, characterize core TVBC 26. In the carbon‐poor environment of core TVBC 08, a doubling of the 14C uptake, a 250 times increase in the number of autotrophic nitrifiers, a four‐fold lowering in the number of aerobic sulphur oxidizers and a higher order of denitrifiers exists when compared with core TVBC 26; this suggests the prevalence of a potentially autotrophic microbial community in core TVBC 08 in response to hydrothermal activity. Microbial activity at the northern TVBC 26 is predominantly heterotrophic with enhanced chemosynthetic activity restricted to tan‐green mottled zones. The southern TVBC 08 is autotrophic with increased heterotrophic activity in the deepest layers. Notably, the bacterial activity is generally dependent on the surface productivity in TVBC 26, the carbon‐rich core, and mostly independent in TVBC 08, the carbon‐poor, hydrothermally influenced core. The northern sediment is more organic sink‐controlled and the southern sediment is more hydrothermal source‐controlled. Hydrothermal activity and associated rock alteration processes may be more relevant than organic matter delivery in these deep‐sea sediments. Thus, this study highlights the relative importance of hydrothermal activity versus organic delivery in evoking different microbial responses in the Central Indian Basin sediments.  相似文献   

13.
Abstract Basaltic basement has been recovered by deep-sea drilling at seven sites on the linear Ninetyeast Ridge in the eastern Indian Ocean. Studies of the recovered lavas show that this ridge formed from ~ 82 to 38 Ma as a series of subaerial volcanoes that were created by the northward migration of the Indian Plate over a fixed magma source in the mantle. The Sr, Nd and Pb isotopic ratios of lavas from the Ninetyeast Ridge range widely, but they largely overlap with those of lavas from the Kerguelen Archipelago, thereby confirming previous inferences that the Kerguelen plume was an important magma source for the Ninetyeast Ridge. Particularly important are the ~ 81 Ma Ninetyeast Ridge lavas from DSDP Site 216 which has an anomalous subsidence history (Coffin 1992). These lavas are FeTi-rich tholeiitic basalts with isotopic ratios that overlap with those of highly alkalic, Upper Miocene lavas in the Kerguelen Archipelago. The isotopic characteristics of the latter which erupted in an intraplate setting have been proposed to be the purest expression of the Kerguelen plume (Weis et al. 1993a,b). Despite the overlap in isotopic ratios, there are important compositional differences between lavas erupted on the Ninetyeast Ridge and in the Kerguelen Archipelago. The Ninetyeast Ridge lavas are dominantly tholeiitic basalts with incompatible element abundance ratios, such as La/Yb and Zr/Nb, which are intermediate between those of Indian Ocean MORB (mid-ocean ridge basalt) and the transitional to alkalic basalts erupted in the Kerguelen Archipelago. These compositional differences reflect a much larger extent of melting for the Ninetyeast Ridge lavas, and the proximity of the plume to a spreading ridge axis. This tectonic setting contrasts with that of the recent alkalic lavas in the Kerguelen Archipelago which formed beneath the thick lithosphere of the Kerguelen Plateau. From ~ 82 to 38 Ma there was no simple, systematic temporal variation of Sr, Nd and Pb isotopic ratios in Ninetyeast Ridge lavas. Therefore all of the isotopic variability cannot be explained by aging of a compositionally uniform plume. Although Class et al. (1993) propose that some of the isotopic variations reflect such aging, we infer that most of the isotopic heterogeneity in lavas from the Ninetyeast Ridge and Kerguelen Archipelago can be explained by mixing of the Kerguelen plume with a depleted MORB-like mantle component. However, with this interpretation some of the youngest, 42–44 Ma, lavas from the southern Ninetyeast Ridge which have206pb/204Pb ratios exceeding those in Indian Ocean MORB and Kerguelen Archipelago lavas require a component with higher206Pb/204Pb, such as that expressed in lavas from St. Paul Island.  相似文献   

14.
A diverse volcanic and plutonic rock suite was recovered from the center of the 80 km long ridge segment of the Southwest Indian Ridge (54°S, 7°16 E) between the Islas Orcadas and Shaka Fracture Zones. The cumulus nature of the gabbroic rocks in the suite is indicated by phase, modal and cryptic layering, igneous lamination, and low incompatible element abundances. We present a mass-balance model for calculating the proportions and compositions of cumulus phases and crystallized intercumulus liquid from bulk-rock major element compositions. The model is based on the ability to define a compositional array of basaltic liquids and on the assumption that cumulus minerals are initially in equilibrium with trapped liquid. Calculated proportions of trapped liquid range from 3%–15%; values that are characteristic of adcumulates to mesocumulates. Models of postcumulus crystallization indicate significant enrichments of incompatible elements and buffering of compatible elements in residual trapped liquids, thus explaining the high TiO2 contents observed in magnesian clinopyroxenes. Cumulus phase assemblages and compositions suggest solidification in shallow level magma chambers, but disequilibrium plagioclase compositions suggest some crystallization at greater depth. Furthermore, basalt compositions projected onto the olivine-clinopyroxenequartz pseudoternary suggest magma generation over a range of pressures (from less than 10 to greater than 20 kb) as well as polybaric fractional crystallization. We suggest that the Southwest Indian Ridge is characterized by low magma supply with small batches of melt that either ascend directly to the surface having undergone limited polybaric crystallization or are trapped in shallow crustal magma chambers where they evolve and solidify to form cumulate gabbros. The adcumulus nature of the gabbros investigated here suggests slow cooling rates typical of large intrusions implying relatively large, but ephemeral magma chambers below segments of the Southwest Indian Ridge.  相似文献   

15.
On breaks of the Indian monsoon   总被引:1,自引:0,他引:1  
For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of ’break monsoon’ is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and Deet al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Websteret al 1998; Krishnanet al it 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnanet al (2000) but little overlap with breaks identified by Websteret al (1998). Further, there are three or four active-break cycles in a season according to Websteret al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo (2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and Deet al 1998) nor the rainbreaks occur every year. This suggests that the `breaks’ in these studies are weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative  相似文献   

16.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

17.
We present new 40Ar/39Ar data for two of the Tore-Madeira Rise (TMR) volcanic seamounts. A sample from Tore East seamount on the northern part of the TMR yielded an ultra-precise age of 80.50 ± 0.13 Ma (2σ) that is similar within uncertainties to a published age obtained by U–Pb TIMS technique on titanites and zircons extracted from Tore NW seamount. Another sample from Isabelle seamount, located on the southern part of the TMR failed to produce a plateau age but yielded a minimum age estimate of >85 Ma. We filtered the published ages available on the TMR, the surrounding seamounts and the massifs of southwest Portugal to better understand the origin of this magmatic province. Together with this dataset, our new data suggest that: (1) a hypothetical Madeira hot-spot track spanning from Serra de Monchique on the continent to Madeira Archipelago is difficult to reconcile with the occurrence of several seamounts geographically located within or very close to this alleged hot-spot track yet being much older than the age predicted by the age trend.

(2) The geographical distribution and age pattern of the TMR and surrounding areas magmatism are still best explained by the interaction of a mantle melting anomaly emitting magma pulses and the different motion phases of the Iberia plate since 103 Ma.

  相似文献   

18.
在《印度洋底大地构造图》的基础上,分析了印度洋盆构造格局和洋盆演化重大事件序列,并从印度洋盆初始裂解机制、扩张中心跃迁与热点作用、洋中脊扩展作用等方面讨论了印度洋盆的张开过程,提出以下几点认识:(1)现今印度洋洋中脊可分为两个系统:东南印度洋中脊-中印度洋中脊-卡斯伯格洋脊系统(东支)和西南印度洋中脊系统(西支),前者是太平洋洋中脊扩展作用的产物,后者是太平洋-东南印度洋中脊与大西洋中脊之间构造调节的产物;(2)印度洋盆最初裂解受地幔柱垂向挤压-水平伸展作用控制,沿前寒武造山带等地壳薄弱带发育;(3)印度洋盆经历两次扩张中心的跃迁,其趋向性跃迁方向与热点相对板块的运动方向具有一致性,显示两者存在内在联系。(4)大西洋和太平洋洋中脊在印度洋交汇,于古近纪连通,末端伴随陆块持续发生碎裂化、裂解化,可称为鱼尾构造模式,表明印度洋盆衔接和调节了三大洋盆的发育和演化过程,具有全球洋盆枢纽的关键意义。  相似文献   

19.
程石  周怀阳 《岩石学报》2019,35(11):3565-3577
人们对超慢速扩张洋中脊深部岩浆过程的了解至今仍十分模糊。我们对西南印度洋洋中脊(Southwest Indian Ridge,SWIR) 63. 9°E处采集到的斜长石超斑状玄武岩(Plagioclase Ultra-Phyric Basalt,PUB)进行了岩石学和地球化学研究。样品具有以下几个特征:斜长石斑晶的体积分数高达~25%,而橄榄石斑晶的体积分数约1%;尽管该样品中玻璃的成分与同一洋脊段玄武岩的成分基本一致,但高Fo橄榄石斑晶与玻璃基质的成分不平衡;不同类型的斜长石晶体之间存在成分差异,单个斜长石大斑晶中的An值也呈现出与正常的结晶分异过程不符的环带;斜长石斑晶中发育溶蚀、筛状等不平衡结构。因此,我们认为,斜长石超斑状玄武岩经历了多期次熔体的作用,是由通过密度分选聚集在岩浆房顶部的斜长石斑晶被之后的火山喷发带出海底形成。尽管斜长石超斑状玄武岩与同一洋脊段的非斑状玄武岩之间并不存在母熔体成分上的差别,但超斑状玄武岩的出现进一步反映了超慢速扩张洋壳岩浆活动的多样性。  相似文献   

20.
Abstract: The glass and mineral chemistry of basalts examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An60–90] and groundmass [An35–79]), olivine (Fo81–88), diopside (Wo45–51, En25–37, Fs14–24), and titanomagnetite (FeOt ~63.75 wt% and TiO2 ~22.69 wt%). The whole-rock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe2+)] (VT basalt: ~0.56–0.58; VM basalt: ~0.57), but differ in their total alkali content (VT basalt: ~2.65; VM basalt: ~3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeOt, TiO2, P2O5, and Na2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the SREE of magma also increased with fractionation, without any change in the (La/Yb)N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56–0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63–0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure >10 kbar, followed by Fe-rich olivine at <10 kbar pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号