首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The closed-form analytical stormwater quality models are developed for simulating urban catchment pollutant buildup and washoff processes. By integrating the rainfall–runoff transformation with pollutant buildup and washoff functions, stormwater quality measures, such as the cumulative distribution functions (CDFs) of pollutant loads, the expected value of pollutant event mean concentrations (EMCs) and the average annual pollutant load can be derived. This paper presents methodologies and major procedures for the development of urban stormwater quality models based on derived probability distribution theory. In order to investigate the spatial variation in model parameters and its impact on stormwater pollutant buildup and washoff processes as well as pollutant loads to receiving waters, an extended form of the original rainfall–runoff transformation which is based on lumped runoff coefficient approach is proposed to differentiate runoff generation mechanisms between the impervious and pervious areas of the catchment. In addition, as a contrast to the aggregated pollutant buildup models formulated with a single lumped buildup parameter, the disaggregated form of the pollutant buildup model is proposed by introducing a number of physically-based parameters associated with pollutant buildup and washoff processes into the pollutant load models. The results from the case study indicate that analytical urban stormwater management model are capable of providing results in good agreement with the field measurements, and can be employed as alternatives to continuous simulation models in the evaluation of long-term stormwater quality measures.  相似文献   

2.
After the buildup of a steady convective motion in a layer, the topography of its surface is determined only by the displacements of the material particles lying on its surface.  相似文献   

3.
Tritium data in the Dead Sea for the period 1960–1979 are given. Tritium levels have increased until 1965 in the upper layers of the Dead Sea reaching a level of 170 TU, in response to the atmospheric buildup of tritium from thermonuclear testing. The levels have been decreasing ever since, both because of rapidly declining atmospheric concentrations of tritium and because of mixing of the surface layers with tritium deficient, deeper water masses. The depth of penetration of the tracer delineated the depth of meromictic stratification and successfully monitored the deepening of the pycnocline, until the overturn in 1979 homogenised the entire tritium profile. Modelling the changing tritium inventory over this period showed the predominance of the direct exchange across the air/sea interface, both in the buildup of tritium in the lake and also in its subsequent removal from it. The good fit between calculated and measured tritium inventories confirmed the evaporation estimate of 1.46 m/yr (the mean value for the period) with a precision unattained by other methods.  相似文献   

4.
Experimental data and a new model of ice buildup are used to assess and to study variations of heat flux at the water–ice interface. The latter plays an important part in ice cover formation but still is poorly known because of the lack of field temperature measurements with sufficient spatial and temporal resolution along the phase transition boundary, which knowledge gap is filled by this study.  相似文献   

5.
This paper presents results of observation and analysis of the response of one of the longest cable-stayed bridges in the world to the Hyogoken–Nanbu (Kobe) Earthquake of 17 January 1995. It is determined that interaction of the foundations of the bridge towers with the supporting soil plays a decisive role in the overall structural behaviour. The key factor governing the changes of the soil properties at this site is pore-water pressure buildup, which results in liquefaction of the saturated surface soil layers under large dynamic loads. Models of the soil and structure are created and initially validated by accurately simulating the system response to a small earthquake. Soil parameters reflecting the pore-water pressure buildup in the strong earthquake are determined by an advanced non-linear effective stress analysis, combining the Ramberg–Osgood model of stress–strain dependence with a pore pressure model based on shear work concept. They are utilized to investigate and simulate the interaction of the foundation and the supporting soil using the program SASSI with the flexible volume substructuring approach. The results show a good agreement with the observations and have useful implications to the scientific and engineering practice. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The Golan Heights is a Plio-Pleistocene volcanic plateau. Cinder cones of Late Pleistocene age are very common in the eastern and northern Golan, while phreatomagmatic deposits are relatively rare and occur just in two structures — the maar of Birket Ram and the tuff ring of Mt. Avital. The complex of Mt. Avital includes two large cinder cones, a tuff ring with an elongated central depression and several basaltic flows, some of them breach the cinder cones. The (exposed) eruptive history of the complex includes (1) an early stage of basaltic lava flows, (2) strombolian activity and the buildup of the southern cinder cone, (3) a second stage of basaltic flows and the buildup of the northern cinder cone, and then a transition to (4) phreatomagmatic explosions. The phreatomagmatic deposits include surges, lapilli fallout deposits and coarse-grained lithic tuff breccias, which were found up to 200 m above the central depression. Basaltic and scoriaceous clasts are the main component of all deposits, while juvenile material is usually a minor component, almost absent in the lapilli deposits.It is suggested that the phreatomagmatic events in Mt. Avital were induced by the infiltration of water from a lake that existed in a nearby topographic low (Quneitra Valley). The lake was formed or significantly expanded at about 300 ka due to a lava flow that blocked the drainage of the valley to the west. The interlayering of tuff and scoria at the top of the northern cinder cone and the good preservation of a lava flow top breccia under the surges imply that the phreatomagmatic activity immediately followed and even coincided with the last stages of strombolian activity. It is suggested that the dry–wet transition was triggered by the effusion of the second stage lavas and the buildup of the northern cinder cone, which probably caused a reduction of pressure in the magmatic system and allowed the lake water an access to the magmatic system. The minimum age of the phreatomagmatic events is determined by a 54 ka Musterian site which lies directly on top of the tuff in the Quneitra Valley.  相似文献   

7.
In this paper, a novel coupled pore-scale model of pore-fluid interacting with discrete particles is presented for modeling liquefaction of saturated granular soil. A microscale idealization of the solid phase is achieved using the discrete element method (DEM) while the fluid phase is modeled at a pore-scale using the lattice Boltzmann method (LBM). The fluid forces applied on the particles are calculated based on the momentum exchange between the fluid and particles. The presented model is based on a first principles formulation in which pore-pressure develops due to actual changes in pore space as particles׳ rearrangement occurs during shaking. The proposed approach is used to model the response of a saturated soil deposit subjected to low and large amplitude seismic excitations. Results of conducted simulations show that at low amplitude shaking, the input motion propagates following the theory of wave propagation in elastic solids. The deposit response to the strong input motion indicates that liquefaction took place and it was due to reduction in void space during shaking that led to buildup in pore-fluid pressure. Soil liquefaction was associated with soil stiffness degradation and significant loss of interparticle contacts. Simulation results also indicate that the level of shaking-induced shear strains and associated volumetric strains play a major role in the onset of liquefaction and the rate of pore-pressure buildup.  相似文献   

8.
Carbon dioxide injection into deep saline formations may induce large‐scale pressure increases and migration of native fluid. Local high‐conductivity features, such as improperly abandoned wells or conductive faults, could act as conduits for focused leakage of brine into shallow groundwater resources. Pressurized brine can also be pushed into overlying/underlying formations because of diffuse leakage through low‐permeability aquitards, which occur over large areas and may allow for effective pressure bleed‐off in the storage reservoirs. This study presents the application of a recently developed analytical solution for pressure buildup and leakage rates in a multilayered aquifer‐aquitard system with focused and diffuse brine leakage. The accuracy of this single‐phase analytical solution for estimating far‐field flow processes is verified by comparison with a numerical simulation study that considers the details of two‐phase flow. We then present several example applications for a hypothetical CO2 injection scenario (without consideration of two‐phase flow) to demonstrate that the new solution is an efficient tool for analyzing regional pressure buildup in a multilayered system, as well as for gaining insights into the leakage processes of flow through aquitards, leaky wells, and/or leaky faults. This solution may be particularly useful when a large number of calculations needs to be performed, that is, for uncertainty quantification, for parameter estimation, or for the optimization of pressure‐management schemes.  相似文献   

9.
We report the first time-series of seasonal change in the concentration of mercury in sea water, and its speciation and mechanism of replenishment by sulphide chemistry in an intermittently reducing coastal fjord. We observed total Hg levels in sea water as low as 0.3 ng l−1 in the oxygenated waters of Saanich Inlet, British Columbia, as well as a correlation of seasonal buildup of Hg and sulphide in the bottom waters between March and August through diffusive supplies from the anoxic sea water/sediment interface.  相似文献   

10.
The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future non-potable reuse. The injection zone originally contained native saline ground water that was similar in composition to sea water. The zone has a transmissivity of about 1.2 X 106 feet squared per day (ft2/d) and is within the lower part of the Floridan aquifer. Treated sewage that had a mean chloride concentration of 170 milligrams per liter (mg/1) was injected through a single well for 12 months at a mean rate of 4.7 X 105 cubic feet per day (ft3/d). The volume of water injected during the year was 1.7 X 108 cubic feet. Pressure buildup at the end of one year ranged from less than 0.1 to as much as 2.4 pounds per square inch (lb/in2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water. This is consistent with the 200- to 600-mg/l increase in chloride concentration observed in water from the shallowest permeable zone during the test.  相似文献   

11.
Continental intraplate regions are characterized by uniform stresses over thousands of kilometers. Local stresses, with wavelengths of tens to hundreds of kilometers can accumulate at inhomogeneities lying within these regional fields. A variety of geological structures, herein called local stress concentrators (LSCs), act as elastic inhomogeneities. The temporal buildup of stress depends on the particular structure and its geometrical relationship with the regional stress field. The interaction of the local and the regional stress fields can result in the rotation of the latter over wavelengths of tens to hundreds of kilometers. This rotation can be detected by direct measurement or from seismicity data. Intraplate earthquakes (IPEs) result when the local stresses become comparable with their regional counterparts, i.e., hundreds of megapascals. Globally, most of the seismic energy release associated with IPEs occurs within old rifts which contain LSCs most favorable for stress buildup by stress inversion. Of the various LSCs, stepover en echelon faults are associated the largest IPEs. In low tectonic strain rate regions, IPEs are associated with larger stress drops. With the availability of a variety of LSCs, there is generally an absence of repeat earthquakes. Instead, successive earthquakes occur on different structures, leading to the observation of “roaming” earthquakes. These observations suggest a need for a reevaluation of seismic hazard estimation techniques. This study addresses some of these facets of the nature of IPEs with global examples, including a unique, detailed seismicity and geodetic data set collected in a dozen years following the 2001 M 7.7 Bhuj earthquake in western India.  相似文献   

12.
Anomalous seismicity changes (increase followed by a decrease) were recorded prior to three moderate rock bursts in the Star mine, Burke, Idaho. In each case, based upon the anomalous seismicity behavior, miners were evacuated or were prohibited from entering active mine stopes that were located in the immediate vicinity of the seismicity buildup prior to the bursts. Analyses of pre- and post-seismic activity are interpreted in terms of, and shown to be consistent with, the inclusion theory of failure. Implications of these observational results for the problem of rock bursts and earthquake prediction are discussed.  相似文献   

13.
An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.  相似文献   

14.
Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO2 storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO2 over 50 years was used. The CO2-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO2 plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO2 migration as a result of multiple secondary seals, coupled with lateral preferential CO2 viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO2 migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.  相似文献   

15.
16.
运用RFPA2D作为研究手段对岩石在单轴压缩条件下破裂过程的自组织行为作了数值模拟,再现了岩石破裂过程中的应力积累(stress buildup)、应力转移(stress transference)和应力阴影(stress shadow)等“3S”现象,探讨了自组织临界特征,澄清了临界自组织现象等概念。研究结果表明,岩石破裂过程中的自组织行为是一个动态力学过程,并不一定只是在自组织临界状态点之后才发生,而是在临界状态点附近前后都能发生,只不过显现程度各有差异,临界状态点之后现象更为显著。  相似文献   

17.
The transport mechanisms responsible for the seasonal behavior of total ozone are deduced from the comparison of model results to stratospheric data. The seasonal transport is dominated by a combination of the diabatic circulation and transient planetary wave activity acting on a diffusively and photochemically determined background state. The seasonal variation is not correctly modeled as a diffusive process. The buildup of total ozone at high latitudes during winter is dependent upon transient planetary wave activity of sufficient strength to cause the breakdown of the polar vortex. While midwinter warmings are responsible for enhanced ozone transport to high latitudes, the final warming marking the transition from zonal mean westerlies to zonal mean easterlies is the most important event leading to the spring maximum. The final warming is not followed by reacceleration of the mean flow; so that the ozone transport associated with this event is more pronounced than that associated with midwinter warmings.  相似文献   

18.
The spatial distribution of iron incrustations around an abandoned water well after 38 years of use was studied by analyzing the iron content of soil samples from 12 core borings. Three of these were performed inside the gravel pack, the rest at different distances in the adjacent aquifer. Incrustations had preferentially accumulated at the bottom of the screen coinciding with a zone of higher aquifer permeability. As expected, all cores from the annulus show buildup of iron oxides but the ones outside also showed elevated iron content up to 4 m away from the screen. Such distant incrustations are very difficult to remove, by mechanical or chemical methods. The common procedure of removing tubing and annulus material to install a new well at the same location could therefore give the replacement well a hydraulic disadvantage as the incrustations in the aquifer remain in place.  相似文献   

19.
Soil liquefaction induced by earthquakes frequently cause costly damage to pile foundations. However, various aspects of the dynamic behavior and failure mechanisms of piles in liquefiable soils still remain unclear. This paper presents a shake-table experiment conducted to investigate the dynamic behavior of a reinforced-concrete (RC) elevated cap pile foundation during (and prior to) soil liquefaction. Particular attention was paid to the failure mechanism of the piles during a strong shaking event. The experimental results indicate that decreasing the frequency and increasing the amplitude of earthquake excitation increased the pile bending moment as well as the speed of the excess pore pressure buildup in the free-field. The critical pile failure mode in the conducted testing configuration was found to be of the bending type, which was also confirmed by a representative nonlinear numerical model of the RC pile. The experimental results of this study can be used to calibrate numerical models and provide insights on seismic pile analysis and design.  相似文献   

20.
One-dimensional flow experiments on biological clogging were carried out by biostimulating columns packed with glass beads, sterilized, and inoculated with toluene-utilizing bacteria. Biostimulation consisted of continuously injecting toluene at four concentrations (3.0 ± 0.9, 6.1 ± 0.8, 8.7 ± 1.6, and 11.3 ± 0.8 mg/L). The results of column flow experiments indicated that a threshold concentration of toluene exists below which the total biomass in the column can be kept at a steady-state level. The column cores were extruded and segmented to determine the biomass distribution throughout the column at clogging. Clogging resulted in a significant buildup of filamentous bacteria close to the inlet end. Based on the nucleotide sequence of 16S rRNA genes, the dominant filamentous bacteria were identified as Nocardia farcinica. A 235-d column experiment demonstrated that the clogging near injection points can be controlled by keeping the influent concentration of toluene below the threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号